Based on the analysis of the development process system status of domestic and foreign civil aircraft airborne system suppliers,this paper proposes the overall construction idea of"a set of civil aircraft process...Based on the analysis of the development process system status of domestic and foreign civil aircraft airborne system suppliers,this paper proposes the overall construction idea of"a set of civil aircraft process system"based on IPD(Integrated product development)in the organization.The development stage,process,activity and task are the logical framework elements of the system construction."Based on process decomposition,vertical stratification,horizontal segmentation,combination of special and common,process customized to tools,role and process integration,giving full consideration to the interface between supplier management and process modules"etc.are the concrete ideas.Moreover,formulate top⁃level system construction standards,implemented by process system management tool platform,so that the process system and development work can be effectively integrated to effectively guide the development work of airborne system suppliers,and meet the quality and airworthiness requirements of civil aircraft development.Through the development application of a certain type of flight control system,the process system and tool platform were verified and optimized in practice.展开更多
This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it ...This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it is necessary to fully recognize and utilize the characteristics and functional advantages of the steel manufacturing process,pay more attention to energy quality,firmly grasp the overall goal of system optimization,focus on the integrated optimization of gas,steam,and waste heat systems,and propose the idea of constructing a"steel chemi-cal gas electricity heating cooling multi generation system".Based on practice,the main principles,models,and effects of implementing systematic energy conservation in steel enterprises have been proposed.展开更多
Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process sys...Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.展开更多
The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based...The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based on working process systematization of the practice teaching quality is established, the management of quality evaluation system and the project of the monitoring are put forward.展开更多
The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wid...The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.展开更多
This is an overview of the development of process systems engineering (PSE) in a smaller world. Two different spatio-temporal scopes are identified for microscale and nanoscale process systems. The features and challe...This is an overview of the development of process systems engineering (PSE) in a smaller world. Two different spatio-temporal scopes are identified for microscale and nanoscale process systems. The features and challenges for each scale are reviewed, and different methodologies used by them discussed. Comparison of these two new areas with traditional process systems engineering is described. If microscale PSE could be considered as an extension of traditional PSE, nanoscale PSE should be accepted as a new discipline which has looser connection with the extant core of chemical engineering. Since "molecular factories" is the next frontier of processing scale, nanoscale PSE will be the new theory to handle the design, simulation and operation of those active processing systems.展开更多
Sustainable engineering becomes a fast growing field of research and education.It aims at designing and operating systems of various scales such that they can use energy and resources in a sustainablemanner.Needless t...Sustainable engineering becomes a fast growing field of research and education.It aims at designing and operating systems of various scales such that they can use energy and resources in a sustainablemanner.Needless to say,this is one of the most challenging engineering problem types that needs scientists,researchers,engineers,and practitioners to collaboratively work for solutions.展开更多
Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In th...Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.展开更多
The definitions, methodology, applications, and perspectives of process system engineering are discussed from a strategic point of view. The focal points in future development of process systems engineering are to bre...The definitions, methodology, applications, and perspectives of process system engineering are discussed from a strategic point of view. The focal points in future development of process systems engineering are to break through in methodology, to expand application fields, and to develop a new generation of process simulation systems.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.B...The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.展开更多
An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.T...An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.展开更多
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c...Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.展开更多
A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. T...A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. To construct an optimized quality evaluation system for postgraduate dissertation (QESPD), we summarized the influencing factors and invited 10 experienced specialists to rate and prioritize them based on fuzzy analytic hierarchy process. Four primary indicators (innovation, integrity, scientificity and normativity) and 16 sub-indicators were selected to form the evaluation system. The order of primary indicators by weight, was innovation (0.4269), scientificity (0.2807), integrity (0.1728) and normativity (0.1196). The top five sub-dimensions were theoretical originality, scientific value, data reliability, design rationality and evidence credibility. To demonstrate the effectiveness of the proposed system, a case study was performed. In the case study, it was demonstrated that the established two-index-hierarchy QESPD in this study was a more scientific and reasonable evaluation system worthy of promotion and application.展开更多
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in...As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.展开更多
Climate services (CS) are crucial for mitigating and managing the impacts and risks associated with climate-induced disasters. While evidence over the past decade underscores their effectiveness across various domains...Climate services (CS) are crucial for mitigating and managing the impacts and risks associated with climate-induced disasters. While evidence over the past decade underscores their effectiveness across various domains, particularly agriculture, to maximize their potential, it is crucial to identify emerging priority areas and existing research gaps for future research agendas. As a contribution to this effort, this paper employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to review the state-of-the-art in the field of climate services for disaster risk management. A comprehensive search across five literature databases combined with a snowball search method using ResearchRabbit was conducted and yielded 242 peer-reviewed articles, book sections, and reports over 2013-2023 after the screening process. The analysis revealed flood, drought, and food insecurity as major climate-related disasters addressed in the reviewed literature. Major climate services addressed included early warning systems, (sub)seasonal forecasts and impact-based warnings. Grounded in the policy processes’ theoretical perspective, the main focus identified and discussed three prevailing policy-oriented priority areas: 1) development of climate services, 2) use-adoption-uptake, and 3) evaluation of climate services. In response to the limitations of the prevalent supply-driven and top-down approach to climate services promotion, co-production emerges as a cross-cutting critical aspect of the identified priority areas. Despite the extensive research in the field, more attention is needed, particularly pronounced in the science-policy interface perspective, which in practice bridges scientific knowledge and policy decisions for effective policy processes. This perspective offers a valuable analytical lens as an entry point for further investigation. Hence, future research agendas would generate insightful evidence by scrutinizing this critical aspect given its importance to institutions and climate services capacity, to better understand intricate facets of the development and the integration of climate services into disaster risk management.展开更多
This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control ...This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.展开更多
文摘Based on the analysis of the development process system status of domestic and foreign civil aircraft airborne system suppliers,this paper proposes the overall construction idea of"a set of civil aircraft process system"based on IPD(Integrated product development)in the organization.The development stage,process,activity and task are the logical framework elements of the system construction."Based on process decomposition,vertical stratification,horizontal segmentation,combination of special and common,process customized to tools,role and process integration,giving full consideration to the interface between supplier management and process modules"etc.are the concrete ideas.Moreover,formulate top⁃level system construction standards,implemented by process system management tool platform,so that the process system and development work can be effectively integrated to effectively guide the development work of airborne system suppliers,and meet the quality and airworthiness requirements of civil aircraft development.Through the development application of a certain type of flight control system,the process system and tool platform were verified and optimized in practice.
文摘This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it is necessary to fully recognize and utilize the characteristics and functional advantages of the steel manufacturing process,pay more attention to energy quality,firmly grasp the overall goal of system optimization,focus on the integrated optimization of gas,steam,and waste heat systems,and propose the idea of constructing a"steel chemi-cal gas electricity heating cooling multi generation system".Based on practice,the main principles,models,and effects of implementing systematic energy conservation in steel enterprises have been proposed.
文摘Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.
文摘The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based on working process systematization of the practice teaching quality is established, the management of quality evaluation system and the project of the monitoring are put forward.
文摘The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.
文摘This is an overview of the development of process systems engineering (PSE) in a smaller world. Two different spatio-temporal scopes are identified for microscale and nanoscale process systems. The features and challenges for each scale are reviewed, and different methodologies used by them discussed. Comparison of these two new areas with traditional process systems engineering is described. If microscale PSE could be considered as an extension of traditional PSE, nanoscale PSE should be accepted as a new discipline which has looser connection with the extant core of chemical engineering. Since "molecular factories" is the next frontier of processing scale, nanoscale PSE will be the new theory to handle the design, simulation and operation of those active processing systems.
文摘Sustainable engineering becomes a fast growing field of research and education.It aims at designing and operating systems of various scales such that they can use energy and resources in a sustainablemanner.Needless to say,this is one of the most challenging engineering problem types that needs scientists,researchers,engineers,and practitioners to collaboratively work for solutions.
基金Supported by Division of Chemical,Bioengineering,Environmental and Transport Systems(CBET) of the National Science Foundation(NSF) of the United States of America
文摘Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.
文摘The definitions, methodology, applications, and perspectives of process system engineering are discussed from a strategic point of view. The focal points in future development of process systems engineering are to break through in methodology, to expand application fields, and to develop a new generation of process simulation systems.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金Support by the National Natural Science Foundation of China(No.92258303)the Project of Donghai Laboratory(No.DH-2022ZY0005)。
文摘The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.
基金supported by the National Natural Science Foundation of China (Grant Nos.41730965, U2242204, and 41175047)the National Key Basic Research and Development Project of China (Grant No.2013CB430104)+2 种基金the Key Project of the Joint Funds of the Natural Science Foundation of Zhejiang Province (Grant No.LZJMZ23D050003financial support from the China Scholarship Council for her visit to CAPSUniversity of Oklahoma
文摘An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金supported by National Natural Science Foundation of China(52003240)Zhejiang Provincial Natural Science Foundation of China(LQ21B070007)China Postdoctoral Science Foundation(2022M722818).
文摘Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.
文摘A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. To construct an optimized quality evaluation system for postgraduate dissertation (QESPD), we summarized the influencing factors and invited 10 experienced specialists to rate and prioritize them based on fuzzy analytic hierarchy process. Four primary indicators (innovation, integrity, scientificity and normativity) and 16 sub-indicators were selected to form the evaluation system. The order of primary indicators by weight, was innovation (0.4269), scientificity (0.2807), integrity (0.1728) and normativity (0.1196). The top five sub-dimensions were theoretical originality, scientific value, data reliability, design rationality and evidence credibility. To demonstrate the effectiveness of the proposed system, a case study was performed. In the case study, it was demonstrated that the established two-index-hierarchy QESPD in this study was a more scientific and reasonable evaluation system worthy of promotion and application.
文摘As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.
文摘Climate services (CS) are crucial for mitigating and managing the impacts and risks associated with climate-induced disasters. While evidence over the past decade underscores their effectiveness across various domains, particularly agriculture, to maximize their potential, it is crucial to identify emerging priority areas and existing research gaps for future research agendas. As a contribution to this effort, this paper employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to review the state-of-the-art in the field of climate services for disaster risk management. A comprehensive search across five literature databases combined with a snowball search method using ResearchRabbit was conducted and yielded 242 peer-reviewed articles, book sections, and reports over 2013-2023 after the screening process. The analysis revealed flood, drought, and food insecurity as major climate-related disasters addressed in the reviewed literature. Major climate services addressed included early warning systems, (sub)seasonal forecasts and impact-based warnings. Grounded in the policy processes’ theoretical perspective, the main focus identified and discussed three prevailing policy-oriented priority areas: 1) development of climate services, 2) use-adoption-uptake, and 3) evaluation of climate services. In response to the limitations of the prevalent supply-driven and top-down approach to climate services promotion, co-production emerges as a cross-cutting critical aspect of the identified priority areas. Despite the extensive research in the field, more attention is needed, particularly pronounced in the science-policy interface perspective, which in practice bridges scientific knowledge and policy decisions for effective policy processes. This perspective offers a valuable analytical lens as an entry point for further investigation. Hence, future research agendas would generate insightful evidence by scrutinizing this critical aspect given its importance to institutions and climate services capacity, to better understand intricate facets of the development and the integration of climate services into disaster risk management.
基金supported in part by the Natural Sciences Engineering Research Council of Canada (NSERC)。
文摘This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.