The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of ...The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided.展开更多
Using Michael Porter's "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia fr...Using Michael Porter's "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia from six aspects (the factor conditions, demand conditions, corporate strategy, structure and competition, related and supporting industries, government and opportunities). And we put forward the following rational recommendations for improving the competitiveness of processing industry cluster of livestock products in Inner Mongolia: (i) The government should increase capital input, focus on supporting processing industry of livestock products, and give play to the guidance and aggregation effect of financial funds; (ii) In terms of enterprises, it is necessary to vigorously develop leading enterprises, to give full play to the cluster effect of the leading enterprises.展开更多
Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with ex...Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.展开更多
In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate tim...In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.展开更多
The IEC 61131-3 standard defines a model and a set of programming languages for the development of industrial automation software. It is widely accepted by industry and most of the commercial tool vendors advertise co...The IEC 61131-3 standard defines a model and a set of programming languages for the development of industrial automation software. It is widely accepted by industry and most of the commercial tool vendors advertise compliance with it. On the other side, Model Driven Development (MDD) has been proved as a quite successful paradigm in general-purpose computing. This was the motivation for exploiting the benefits of MDD in the industrial automation domain. With the emerging IEC 61131 specification that defines an object-oriented (OO) extension to the function block model, there will be a push to the industry to better exploit the benefits of MDD in automation systems development. This work discusses possible alternatives to integrate the current but also the emerging specification of IEC 61131 in the model driven development process of automation systems. IEC 61499, UML and SysML are considered as possible alternatives to allow the developer to work in higher layers of abstraction than the one supported by IEC 61131 and to more effectively move from requirement specifications into the implementation model of the system.展开更多
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si...The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.展开更多
A safety document management system, known as a Permit for Work (PFW) system is used commonly in the Power Industry to provide appropriate safety conditions for those working on the generating system. This paper inves...A safety document management system, known as a Permit for Work (PFW) system is used commonly in the Power Industry to provide appropriate safety conditions for those working on the generating system. This paper investigates how a safety management process (+PFW) can be combined with a safety framework to enhance system effectiveness to ensure the requirements of users and suppliers can be met. While the paper makes some reference to the power industry, the concept is applicable to the management of systems in other domains.展开更多
Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the c...Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of展开更多
基金Shanghai Municipal Science & Technology Projects, China (No. 09DZ1203300, No. 10JC1415200)
文摘The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided.
基金Supported by National Natural Science Foundation(70963014,71210107012)
文摘Using Michael Porter's "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia from six aspects (the factor conditions, demand conditions, corporate strategy, structure and competition, related and supporting industries, government and opportunities). And we put forward the following rational recommendations for improving the competitiveness of processing industry cluster of livestock products in Inner Mongolia: (i) The government should increase capital input, focus on supporting processing industry of livestock products, and give play to the guidance and aggregation effect of financial funds; (ii) In terms of enterprises, it is necessary to vigorously develop leading enterprises, to give full play to the cluster effect of the leading enterprises.
基金financial supports from the Shenzhen Science and Technology Innovation Commission, China (Nos. KQTD20170328154443162, JCYJ20180305123432756)。
文摘Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.
基金Project(61025015) supported by the National Natural Science Funds for Distinguished Young Scholars of ChinaProject(21106036) supported by the National Natural Science Foundation of China+2 种基金Project(200805331103) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(NCET-08-0576) supported by Program for New Century Excellent Talents in Universities of ChinaProject(11B038) supported by Scientific Research Fund for the Excellent Youth Scholars of Hunan Provincial Education Department,China
文摘In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.
文摘The IEC 61131-3 standard defines a model and a set of programming languages for the development of industrial automation software. It is widely accepted by industry and most of the commercial tool vendors advertise compliance with it. On the other side, Model Driven Development (MDD) has been proved as a quite successful paradigm in general-purpose computing. This was the motivation for exploiting the benefits of MDD in the industrial automation domain. With the emerging IEC 61131 specification that defines an object-oriented (OO) extension to the function block model, there will be a push to the industry to better exploit the benefits of MDD in automation systems development. This work discusses possible alternatives to integrate the current but also the emerging specification of IEC 61131 in the model driven development process of automation systems. IEC 61499, UML and SysML are considered as possible alternatives to allow the developer to work in higher layers of abstraction than the one supported by IEC 61131 and to more effectively move from requirement specifications into the implementation model of the system.
基金supported in part by the National Natural Science Foundation of China(NSFC)(92167106,61833014)Key Research and Development Program of Zhejiang Province(2022C01206)。
文摘The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.
文摘A safety document management system, known as a Permit for Work (PFW) system is used commonly in the Power Industry to provide appropriate safety conditions for those working on the generating system. This paper investigates how a safety management process (+PFW) can be combined with a safety framework to enhance system effectiveness to ensure the requirements of users and suppliers can be met. While the paper makes some reference to the power industry, the concept is applicable to the management of systems in other domains.
文摘Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of