Background Major depressive disorders(MDDs)impose substantial burdens on individuals and society;however,further detailed analysis is still needed for its long-term trends.Aims This study aimed to analyse the gender-s...Background Major depressive disorders(MDDs)impose substantial burdens on individuals and society;however,further detailed analysis is still needed for its long-term trends.Aims This study aimed to analyse the gender-specific temporal trends and cohort variations of MDD incidence among Chinese residents over the past three decades.Methods Employing the age-period-cohort-interaction model and leveraging data from the Global Burden of Disease Study 2019,this research identified and analysed incidence trends of MDD among Chinese males and females aged 5-94 years from 1990 to 2019 across three dimensions,encompassing age,period and birth cohort.Results The analysis reveals age-related effects,indicating heightened MDD risk among adolescents and older adults.Specifically,individuals entering the older adulthood at the age of 65-69 significantly increased the risk of MDD by 64.9%.People aged 90-94 years witnesseda 105.4%increase in MDD risk for the overall population,with females and males in this age group experiencing a 75.1%and 103.4%increase,respectively.In terms of period effects,the risk of MDD displayed a decline from 1990 to 1994,followed by a rebound in 2008.Cohort effects demonstrated diverse generational patterns,with generationⅠand generationⅢmanifesting opposing‘age-as-level'trends.GenerationⅡand generationⅣexhibited'cumulative disadvantage'and'cumulative advantage'patterns,respectively.Age effects indicated an overall higher risk of MDD incidence in females,while cohort effects showed greater variations of MDD incidence among females.Conclusions The study underscores the substantial effects of age,period and cohort on MDD across genders in China.Priority interventions targeting vulnerable populations,including children,adolescents,older adults,females and the post-millennium birth cohort,are crucial to mitigate the impact of MDD.展开更多
In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without ...In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime...Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.展开更多
The airlines need to select the optional equipment according to their individual development demands and the manufacture′s standard specification manual when purchasing a new airplane.For this customization process,t...The airlines need to select the optional equipment according to their individual development demands and the manufacture′s standard specification manual when purchasing a new airplane.For this customization process,the selection theory is mainly based on qualitative analysis and quantitative analysis.The grey incidence analysis(GIA)is used for modeling,which evaluates the correlations between optional equipment and airlines′individual demands.Meanwhile,the customization demands are quantitatively processed as different weights in evaluation index system with analytical hierarchy process.Then,the value of grey incidence degree is obtained which shows whether the optional equipment is on the purchasing list or not.Finally,two airlines′customization demands are applied in the example of aircraft cabin′s seats,so two different purchasing priorities and equipment installation lists can be obtained.The results and comparisons verify the reasonable of modeling,which provides an objective scheme of aircraft equipment selection.展开更多
In order to prevent and control environmental mass incidents,by comprehensively using literature research,case analysis and logical reasoning method,27 factors influencing environmental mass incidents were selected. A...In order to prevent and control environmental mass incidents,by comprehensively using literature research,case analysis and logical reasoning method,27 factors influencing environmental mass incidents were selected. Among them,15 key influencing factors were screened by Delphi-PCA-frequency analysis composite method. The key influencing factors were analyzed,and corresponding countermeasures were put forward.展开更多
The duration of vehicle fire incidents has been closely associated with incidents loss. Understanding the influential priority of factors is significant to take targeted countermeasures for the managements. Based on t...The duration of vehicle fire incidents has been closely associated with incidents loss. Understanding the influential priority of factors is significant to take targeted countermeasures for the managements. Based on the database from WSDOT (Washington Department of Transportation) in USA, we analyze the probability distribution of the vehicle fire accidents' duration. Then we classify the influential factors into the first-grade factors including three categories: time, incident type, operation and the second-grade factors including eight categories: quarter, week and day time, etc. Then GILA (grey relational analysis) model is applied to calculate grey relational grades of the influential factors. The results show that the most important factor of the first-grade factors is incident type, vehicles involved and agencies involved are the major factors among the second-grade factors.展开更多
An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the...An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the method of grey incidence analysis. Nine feature attributes of aircraft are selected to estimate the similarity between the new aircraft and the existing aircraft. A new aircraft X and other six existing aircrafts are taken as examples. Analyses show that similarity estimation results obtained from the method are in accordance with practice.展开更多
Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased ...Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased crops this time in spatial location was analyzed. The results showed that the diseased crops mainly dis- tributed along with river tributaries and downstream of main rivers. The correlation between adjacent diseased plots was little, so the infection of pests and diseases were excluded, and the major reason of incidence might be river pollution.展开更多
Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in ...Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in 10 loci were detected using 10 polymorphic SSR markers selected within the range of 5-14 alleles per locus. All the 20 varieties could be distinguished using two primer pairs and they were divided into four groups using cluster analysis. The genetic similarity (GS) of groups analyzed using cluster analysis varied from 0.14 to 0.83. High acid variety Avrolles separated from other varieties with GS less than 0.42. The second group contained Longfeng and Dolgo from Northeast of China, the inherited genes of Chinese crab apple. The five cider varieties with high tannin contents, namely, Dabinette, Frequin rouge, Kermerrien, M.Menard, and D.Coetligne were clustered into the third group. The fourth group was mainly composed of 12 juice and fresh varieties. Principal coordinate analysis (PCO) also divided all the varieties into four groups. Juice and fresh apple varieties, Longfeng and Dolgo were clustered together, respectively, using both the analyses. Both the analyses showed there was much difference between cider and juice varieties, cider and fresh varieties, as well as Chinese crab apple and western European crab apple, whereas juice varieties and fresh varieties had a similar genetic background. The genetic diversity and differentiation could be sufficiently reflected by combining the two analytical methods.展开更多
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che...Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.展开更多
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
This paper, based on the material processes and relational processes, aims to analysis the deep meaning of chapter one of Pride and Prejudice. The relevant theories will come first in this paper. I will then analyze t...This paper, based on the material processes and relational processes, aims to analysis the deep meaning of chapter one of Pride and Prejudice. The relevant theories will come first in this paper. I will then analyze this extract from three aspects: the analysis of the objective plane of narration, the analysis of Mrs. Bennet' s discourse and the analysis of Mr. Bennet' s discourse.展开更多
The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic suppor...The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic support systems with multiple decision-making factors. The multiple transfer parameters graphical evaluation and review technique(MTP-GERT) is used to model the logistic support process in consideration of two important factors, support activity time and support activity resources, which are two primary causes for the logistic support process uncertainty. On this basis,a global sensitivity analysis(GSA) method based on covariance is designed to analyze the logistic support process uncertainty. The aircraft support process is selected as a case application which illustrates the validity of the proposed method to analyze the support process uncertainty, and some feasible recommendations are proposed for aircraft support decision making on carrier.展开更多
Despite spending considerable effort on the development of manufacturing technology during the production process,manufacturing companies experience resources waste and worse ecological influences. To overcome the inc...Despite spending considerable effort on the development of manufacturing technology during the production process,manufacturing companies experience resources waste and worse ecological influences. To overcome the inconsistencies between energy-saving and environmental conservation,a uniform way of reporting the information and classification was presented. Based on the establishment of carbon footprint( CFP) for machine tools operation,carbon footprint per kilogram( CFK) was proposed as the normalized index to evaluate the machining process.Furthermore,a classification approach was developed as a tracking and analyzing system for the machining process. In addition,a case study was also used to illustrate the validity of the methodology. The results show that the approach is reasonable and feasible for machining process evaluation,which provides a reliable reference to the optimization measures for low carbon manufacturing.展开更多
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord...Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.展开更多
[Objective] The aim was to analyze one cold wave weather process in Chengdu in March in 2010.[Method] Based on the NCEP 1°×1° 6 h interval reanalysis data and daily observation data,using synoptic analy...[Objective] The aim was to analyze one cold wave weather process in Chengdu in March in 2010.[Method] Based on the NCEP 1°×1° 6 h interval reanalysis data and daily observation data,using synoptic analysis and diagnosis methods,and combining with the cold wave forecast index in spring of Sichuan,a cold wave event covering the whole region between March 21 and 24,2010 was analyzed from the aspects of circulation background,influencing weather systems and weather causation.[Result] Results showed that the 500 high-altitude cold vortex,700-850 hPa low layer shear,and ground cold front were the main systems that influenced this cold wave;there was a ridge from Lake Balkhash across Lake Baikal at 500 hPa.The early stage of the process was controlled by the high pressure ridge and the temperature was increasing obviously.The daily mean temperature was high.The range of cold high pressure was large and the central intensity was 1 043.0 hPa;the cold air was strong and deep which was in accordance with the strong surface temperature reduction center.The strong north airstream of Lake Balkhash to Lake Baikal,ground cold high pressure center intensity changes,north and south ocean pressure and temperature differences,850 hPa temperature changes,cold advection movement route and intensity were considered as reference factors for the forecast of cold wave intensity.[Conclusion] The study provided theoretical basis for improving the forecast ability of cold wave weather.展开更多
In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troubleso...In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.展开更多
The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical ...The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.展开更多
基金supported by the National Natural Science Foundation of China(grant number 82103955)the Cyrus Tang Foundation(grant number 050459)the Clinical Medicine Plus X-Young Scholars Project,Peking University,the Fundamental Research Funds for the Central Universities(grant number 7100604313).
文摘Background Major depressive disorders(MDDs)impose substantial burdens on individuals and society;however,further detailed analysis is still needed for its long-term trends.Aims This study aimed to analyse the gender-specific temporal trends and cohort variations of MDD incidence among Chinese residents over the past three decades.Methods Employing the age-period-cohort-interaction model and leveraging data from the Global Burden of Disease Study 2019,this research identified and analysed incidence trends of MDD among Chinese males and females aged 5-94 years from 1990 to 2019 across three dimensions,encompassing age,period and birth cohort.Results The analysis reveals age-related effects,indicating heightened MDD risk among adolescents and older adults.Specifically,individuals entering the older adulthood at the age of 65-69 significantly increased the risk of MDD by 64.9%.People aged 90-94 years witnesseda 105.4%increase in MDD risk for the overall population,with females and males in this age group experiencing a 75.1%and 103.4%increase,respectively.In terms of period effects,the risk of MDD displayed a decline from 1990 to 1994,followed by a rebound in 2008.Cohort effects demonstrated diverse generational patterns,with generationⅠand generationⅢmanifesting opposing‘age-as-level'trends.GenerationⅡand generationⅣexhibited'cumulative disadvantage'and'cumulative advantage'patterns,respectively.Age effects indicated an overall higher risk of MDD incidence in females,while cohort effects showed greater variations of MDD incidence among females.Conclusions The study underscores the substantial effects of age,period and cohort on MDD across genders in China.Priority interventions targeting vulnerable populations,including children,adolescents,older adults,females and the post-millennium birth cohort,are crucial to mitigate the impact of MDD.
文摘In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
文摘Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.
文摘The airlines need to select the optional equipment according to their individual development demands and the manufacture′s standard specification manual when purchasing a new airplane.For this customization process,the selection theory is mainly based on qualitative analysis and quantitative analysis.The grey incidence analysis(GIA)is used for modeling,which evaluates the correlations between optional equipment and airlines′individual demands.Meanwhile,the customization demands are quantitatively processed as different weights in evaluation index system with analytical hierarchy process.Then,the value of grey incidence degree is obtained which shows whether the optional equipment is on the purchasing list or not.Finally,two airlines′customization demands are applied in the example of aircraft cabin′s seats,so two different purchasing priorities and equipment installation lists can be obtained.The results and comparisons verify the reasonable of modeling,which provides an objective scheme of aircraft equipment selection.
基金Supported by the National Natural Science Foundation of China(41001338)Key Projects of Henan Colleges and Universities(15A610012)
文摘In order to prevent and control environmental mass incidents,by comprehensively using literature research,case analysis and logical reasoning method,27 factors influencing environmental mass incidents were selected. Among them,15 key influencing factors were screened by Delphi-PCA-frequency analysis composite method. The key influencing factors were analyzed,and corresponding countermeasures were put forward.
文摘The duration of vehicle fire incidents has been closely associated with incidents loss. Understanding the influential priority of factors is significant to take targeted countermeasures for the managements. Based on the database from WSDOT (Washington Department of Transportation) in USA, we analyze the probability distribution of the vehicle fire accidents' duration. Then we classify the influential factors into the first-grade factors including three categories: time, incident type, operation and the second-grade factors including eight categories: quarter, week and day time, etc. Then GILA (grey relational analysis) model is applied to calculate grey relational grades of the influential factors. The results show that the most important factor of the first-grade factors is incident type, vehicles involved and agencies involved are the major factors among the second-grade factors.
文摘An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the method of grey incidence analysis. Nine feature attributes of aircraft are selected to estimate the similarity between the new aircraft and the existing aircraft. A new aircraft X and other six existing aircrafts are taken as examples. Analyses show that similarity estimation results obtained from the method are in accordance with practice.
文摘Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased crops this time in spatial location was analyzed. The results showed that the diseased crops mainly dis- tributed along with river tributaries and downstream of main rivers. The correlation between adjacent diseased plots was little, so the infection of pests and diseases were excluded, and the major reason of incidence might be river pollution.
文摘Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in 10 loci were detected using 10 polymorphic SSR markers selected within the range of 5-14 alleles per locus. All the 20 varieties could be distinguished using two primer pairs and they were divided into four groups using cluster analysis. The genetic similarity (GS) of groups analyzed using cluster analysis varied from 0.14 to 0.83. High acid variety Avrolles separated from other varieties with GS less than 0.42. The second group contained Longfeng and Dolgo from Northeast of China, the inherited genes of Chinese crab apple. The five cider varieties with high tannin contents, namely, Dabinette, Frequin rouge, Kermerrien, M.Menard, and D.Coetligne were clustered into the third group. The fourth group was mainly composed of 12 juice and fresh varieties. Principal coordinate analysis (PCO) also divided all the varieties into four groups. Juice and fresh apple varieties, Longfeng and Dolgo were clustered together, respectively, using both the analyses. Both the analyses showed there was much difference between cider and juice varieties, cider and fresh varieties, as well as Chinese crab apple and western European crab apple, whereas juice varieties and fresh varieties had a similar genetic background. The genetic diversity and differentiation could be sufficiently reflected by combining the two analytical methods.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(10CX04046A)the Doctoral Fund of Shandong Province(BS2012ZZ011)
文摘Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
文摘This paper, based on the material processes and relational processes, aims to analysis the deep meaning of chapter one of Pride and Prejudice. The relevant theories will come first in this paper. I will then analyze this extract from three aspects: the analysis of the objective plane of narration, the analysis of Mrs. Bennet' s discourse and the analysis of Mr. Bennet' s discourse.
基金supported by the National Natural Science Foundation of China(71171008)
文摘The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic support systems with multiple decision-making factors. The multiple transfer parameters graphical evaluation and review technique(MTP-GERT) is used to model the logistic support process in consideration of two important factors, support activity time and support activity resources, which are two primary causes for the logistic support process uncertainty. On this basis,a global sensitivity analysis(GSA) method based on covariance is designed to analyze the logistic support process uncertainty. The aircraft support process is selected as a case application which illustrates the validity of the proposed method to analyze the support process uncertainty, and some feasible recommendations are proposed for aircraft support decision making on carrier.
基金National Science &Technology Pillar Program during the Twelfth Five-year Plan Period(No.2012BAF01B02)National Science and Technology Major Project of China(No.2012ZX04005031)
文摘Despite spending considerable effort on the development of manufacturing technology during the production process,manufacturing companies experience resources waste and worse ecological influences. To overcome the inconsistencies between energy-saving and environmental conservation,a uniform way of reporting the information and classification was presented. Based on the establishment of carbon footprint( CFP) for machine tools operation,carbon footprint per kilogram( CFK) was proposed as the normalized index to evaluate the machining process.Furthermore,a classification approach was developed as a tracking and analyzing system for the machining process. In addition,a case study was also used to illustrate the validity of the methodology. The results show that the approach is reasonable and feasible for machining process evaluation,which provides a reliable reference to the optimization measures for low carbon manufacturing.
基金Supported by the National Basic Research Program of China (2013CB733600), the National Natural Science Foundation of China (21176073), the Doctoral Fund of Ministry of Education of China (20090074110005), the Program for New Century Excellent Talents in University (NCET-09-0346), Shu Guang Project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.
文摘[Objective] The aim was to analyze one cold wave weather process in Chengdu in March in 2010.[Method] Based on the NCEP 1°×1° 6 h interval reanalysis data and daily observation data,using synoptic analysis and diagnosis methods,and combining with the cold wave forecast index in spring of Sichuan,a cold wave event covering the whole region between March 21 and 24,2010 was analyzed from the aspects of circulation background,influencing weather systems and weather causation.[Result] Results showed that the 500 high-altitude cold vortex,700-850 hPa low layer shear,and ground cold front were the main systems that influenced this cold wave;there was a ridge from Lake Balkhash across Lake Baikal at 500 hPa.The early stage of the process was controlled by the high pressure ridge and the temperature was increasing obviously.The daily mean temperature was high.The range of cold high pressure was large and the central intensity was 1 043.0 hPa;the cold air was strong and deep which was in accordance with the strong surface temperature reduction center.The strong north airstream of Lake Balkhash to Lake Baikal,ground cold high pressure center intensity changes,north and south ocean pressure and temperature differences,850 hPa temperature changes,cold advection movement route and intensity were considered as reference factors for the forecast of cold wave intensity.[Conclusion] The study provided theoretical basis for improving the forecast ability of cold wave weather.
文摘In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.
基金Supported by National Natural Science Foundation of China(Grant No.51805260)National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.51925505)National Natural Science Foundation of China(Grant No.51775278).
文摘The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.