Coal-based H2 generation has abruptly increased in recent years.The PSA-VPSA-SC process is the matured and standard framework for H2 purification and CO_(2) capture in many existing plants,including normal and vacuum ...Coal-based H2 generation has abruptly increased in recent years.The PSA-VPSA-SC process is the matured and standard framework for H2 purification and CO_(2) capture in many existing plants,including normal and vacuum pressure swing adsorption units in series(PSA-VPSA),and shallow condensation unit(SC).However,this standard process is frequently subjected to low H2 recovery ratio and high purification cost.In this work,H2-selective and C02-selective membrane units,i.e.,HM and CO_(2) M,are attempted to support the standard process and ameliorate constraints.In the beginning,HM unit is arranged after VPSA to enhance H2 recovery from the decarbonized stream,i.e.,the PSA-VPSA-SC/HM process.As a result,H2 recovery ratio can be enhanced significantly from 83%to 98%.In the following,VPSA is replaced with CO_(2) M unit to reduce investment and operation cost,i.e.,the PSA-CO_(2) M-SC/HM process.Accordingly,the specific purification cost is diminished from 33.46 to 32.02 USD·(103 m^(3) H_(2))-1,saved by 4.3%,meanwhile the construction cost is falling back and just a little higher than that for the standard process.In the end,another CO_(2) M unit is launched before PSA,i.e.,the CO_(2) M-PSA-CO_(2) M-SC/HM process,which could unbundle CO_(2) enrichment partially from H2 purification,and then save more investment and operation cost.In comparison with the standard process,this ultimate retrofitted process can be superior in all the three crucial indices,i.e.,recovery ratio,investment,and specific purification cost.On the whole,coal-based H2 generation can be ameliorated significantly through high efficient H2-selective and CO_(2)-selective membrane units.展开更多
The wavefront recording plane (WRP), subsequently generalized to be known as the virtual diffraction plane (VDP), is a recent concept that has been successfully deployed in fast generation and processing of digita...The wavefront recording plane (WRP), subsequently generalized to be known as the virtual diffraction plane (VDP), is a recent concept that has been successfully deployed in fast generation and processing of digital holograms. In brief, the WRP and its extension, the VDP, is a hypothetical plane that is located between the hologram and the object scene, and which is at close proximity to the latter. As such, the fringe patterns on the hypothetical plane are carrying the holistic information of the hologram, as well as the local optical properties of the object scene. This important property enables a hologram to be processed with classical image processing techniques that are normally unsuitable for handling holographic information. In this paper we shall review a number of works, that have been developed based on the framework of the WRP and the VDP.展开更多
In chemical product design,the aim is to formulate a product with desired performance.Ingredients and internal product structure are two key drivers of product performance with direct impact on the mechanical,electric...In chemical product design,the aim is to formulate a product with desired performance.Ingredients and internal product structure are two key drivers of product performance with direct impact on the mechanical,electrical,and thermal properties.Thus,there is a keen interest in elucidating the dependence of product performance on ingredients,structure,and the manufacturing process to form the structure.Design of product structure,particularly microstructure,is an intrinsically complex problem that involves different phases of different physicochemical properties,mass fraction,morphology,size distribution,and interconnectivity.Recently,computational methods have emerged that assist systematic microstructure quantification and prediction.The objective of this paper is to review these computational methods and to show how these methods as well as other developments in product design can work seamlessly in a proposed performance,ingredients,structure,and manufacturing process framework for the design of structured chemical products.It begins with the desired target properties and key ingredients.This is followed by computation for microstructure and then selection of processing steps to realize this microstructure.The framework is illustrated with the design of nanodielectric and die attach adhesive products.展开更多
基金financial supports from the National Natural Science Foundation of China(Grant No.21978033,U1663223&21978035)China Postdoctoral Science Foundation(2019M650055)+3 种基金Liaoning Province Funds(XLYC1907063)the Changjiang Scholars Program(T2012049)the Fundamental Research Funds for the Central Universities(DUT19TD33)the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing&Process Intensification Technology(2018K009)。
文摘Coal-based H2 generation has abruptly increased in recent years.The PSA-VPSA-SC process is the matured and standard framework for H2 purification and CO_(2) capture in many existing plants,including normal and vacuum pressure swing adsorption units in series(PSA-VPSA),and shallow condensation unit(SC).However,this standard process is frequently subjected to low H2 recovery ratio and high purification cost.In this work,H2-selective and C02-selective membrane units,i.e.,HM and CO_(2) M,are attempted to support the standard process and ameliorate constraints.In the beginning,HM unit is arranged after VPSA to enhance H2 recovery from the decarbonized stream,i.e.,the PSA-VPSA-SC/HM process.As a result,H2 recovery ratio can be enhanced significantly from 83%to 98%.In the following,VPSA is replaced with CO_(2) M unit to reduce investment and operation cost,i.e.,the PSA-CO_(2) M-SC/HM process.Accordingly,the specific purification cost is diminished from 33.46 to 32.02 USD·(103 m^(3) H_(2))-1,saved by 4.3%,meanwhile the construction cost is falling back and just a little higher than that for the standard process.In the end,another CO_(2) M unit is launched before PSA,i.e.,the CO_(2) M-PSA-CO_(2) M-SC/HM process,which could unbundle CO_(2) enrichment partially from H2 purification,and then save more investment and operation cost.In comparison with the standard process,this ultimate retrofitted process can be superior in all the three crucial indices,i.e.,recovery ratio,investment,and specific purification cost.On the whole,coal-based H2 generation can be ameliorated significantly through high efficient H2-selective and CO_(2)-selective membrane units.
文摘The wavefront recording plane (WRP), subsequently generalized to be known as the virtual diffraction plane (VDP), is a recent concept that has been successfully deployed in fast generation and processing of digital holograms. In brief, the WRP and its extension, the VDP, is a hypothetical plane that is located between the hologram and the object scene, and which is at close proximity to the latter. As such, the fringe patterns on the hypothetical plane are carrying the holistic information of the hologram, as well as the local optical properties of the object scene. This important property enables a hologram to be processed with classical image processing techniques that are normally unsuitable for handling holographic information. In this paper we shall review a number of works, that have been developed based on the framework of the WRP and the VDP.
文摘In chemical product design,the aim is to formulate a product with desired performance.Ingredients and internal product structure are two key drivers of product performance with direct impact on the mechanical,electrical,and thermal properties.Thus,there is a keen interest in elucidating the dependence of product performance on ingredients,structure,and the manufacturing process to form the structure.Design of product structure,particularly microstructure,is an intrinsically complex problem that involves different phases of different physicochemical properties,mass fraction,morphology,size distribution,and interconnectivity.Recently,computational methods have emerged that assist systematic microstructure quantification and prediction.The objective of this paper is to review these computational methods and to show how these methods as well as other developments in product design can work seamlessly in a proposed performance,ingredients,structure,and manufacturing process framework for the design of structured chemical products.It begins with the desired target properties and key ingredients.This is followed by computation for microstructure and then selection of processing steps to realize this microstructure.The framework is illustrated with the design of nanodielectric and die attach adhesive products.