本文提出了一种基于局部形状结构分类的心血管内超声(Intravascular Ultrasound,IVUS)图像中-外膜边界检测方法.首先利用k-均值(k-means)聚类方法,确定局部形状结构类别;其次通过类别标号索引图像块,并对其进行积分通道特征和自相似性...本文提出了一种基于局部形状结构分类的心血管内超声(Intravascular Ultrasound,IVUS)图像中-外膜边界检测方法.首先利用k-均值(k-means)聚类方法,确定局部形状结构类别;其次通过类别标号索引图像块,并对其进行积分通道特征和自相似性特征提取,构建多分类随机决策森林模型;最后由分类模型寻找IVUS图像的关键点,采用曲线拟合方法,实现IVUS图像中-外膜边界检测.实验结果表明,本文方法能够有效地解决IVUS图像中斑块、伪影和血管分支等造成边缘难以准确检测的问题,与已有算法相比,其JM(Jaccard Measure,JM)达到了88.9%,PAD(Percentage of Area Difference,PAD)降低了19.1%,HD(Hausdorff Distance,HD)减少了9.7%,更准确地识别目标边界的关键点,成功地检测出完整的中-外膜边界.展开更多
利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用...利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用基于laplacian of gaussia(LOG)算子的方法对待分割的叶片进行区域检测,然后进行基于形状上下文(shape context)的模板匹配和分割。为了提高匹配速度,先检测叶片的生长点和叶尖,以确定叶片的位置、尺寸和方向;然后使用基于超像素(superpixel)的最优匹配搜索方法来减少搜索的复杂度。对20幅黄瓜叶部病害图像进行分割测试,并与人工分割法进行对比,结果表明,本文所采用的分割算法能较好地从复杂背景下提取出黄瓜叶部病害图像,分割准确率达94.7%,为后期黄瓜病斑的特征提取等工作奠定了良好的基础。展开更多
文摘本文提出了一种基于局部形状结构分类的心血管内超声(Intravascular Ultrasound,IVUS)图像中-外膜边界检测方法.首先利用k-均值(k-means)聚类方法,确定局部形状结构类别;其次通过类别标号索引图像块,并对其进行积分通道特征和自相似性特征提取,构建多分类随机决策森林模型;最后由分类模型寻找IVUS图像的关键点,采用曲线拟合方法,实现IVUS图像中-外膜边界检测.实验结果表明,本文方法能够有效地解决IVUS图像中斑块、伪影和血管分支等造成边缘难以准确检测的问题,与已有算法相比,其JM(Jaccard Measure,JM)达到了88.9%,PAD(Percentage of Area Difference,PAD)降低了19.1%,HD(Hausdorff Distance,HD)减少了9.7%,更准确地识别目标边界的关键点,成功地检测出完整的中-外膜边界.
文摘利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用基于laplacian of gaussia(LOG)算子的方法对待分割的叶片进行区域检测,然后进行基于形状上下文(shape context)的模板匹配和分割。为了提高匹配速度,先检测叶片的生长点和叶尖,以确定叶片的位置、尺寸和方向;然后使用基于超像素(superpixel)的最优匹配搜索方法来减少搜索的复杂度。对20幅黄瓜叶部病害图像进行分割测试,并与人工分割法进行对比,结果表明,本文所采用的分割算法能较好地从复杂背景下提取出黄瓜叶部病害图像,分割准确率达94.7%,为后期黄瓜病斑的特征提取等工作奠定了良好的基础。