The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic rep...The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.展开更多
为提升家用雾化制氧机的用户体验及满意度,提出结合用户体验模型,采用半结构化访谈方式归纳用户需求并建立评价层级体系;采用序关系分析法进行需求指标权重计算及优度排序;通过功能分析系统技术(Function Analysis System Technique,FA...为提升家用雾化制氧机的用户体验及满意度,提出结合用户体验模型,采用半结构化访谈方式归纳用户需求并建立评价层级体系;采用序关系分析法进行需求指标权重计算及优度排序;通过功能分析系统技术(Function Analysis System Technique,FAST)功能树获取产品功能要素,指导设计方案输出;采用模糊综合评价(Fuzzy Comprehensive Evaluation,FCE)法对产品设计方案进行用户满意度评价。研究结果表明:基于序关系分析法和FCE法设计的家用雾化制氧机具有较高的用户满意度,设计方法的集成提升了用户需求获取与方案评价环节的效率及科学性,可为同类产品的创新设计提供参考。展开更多
This study uses a simulation-based approach to investigate the impact of delivery delays due to constraints on transport capacity, transit speed, and routing efficiencies on an economy with various levels of interdepe...This study uses a simulation-based approach to investigate the impact of delivery delays due to constraints on transport capacity, transit speed, and routing efficiencies on an economy with various levels of interdependency among firms. The simulation uses object-oriented programming to create specialized production, consumption, and transportation classes. A set of objects from each class is distributed randomly on a 2D plane. A road network is then established between fixed objects using Prim’s MST (Minimum Spanning Tree) algorithm, followed by construction of an all-pair shortest path matrix using the Floyd Warshall algorithm. A genetic algorithm-based vehicle routing problem solver employs the all-pair shortest path matrix to best plan multiple pickup and delivery orders. Production units utilize economic order quantities (EOQ) and reorder points (ROP) to manage inventory levels. Hicksian and Marshallian demand functions are utilized by consumption units to maximize personal utility. The transport capacity, transit speed, routing efficiency, and level of interdependence serve as 4 factors in the simulation, each assigned 3 distinct levels. Federov’s exchange algorithm is used to generate an orthogonal array to reduce the number of combination replays from 3<sup>4</sup> to just 9. The simulation results of a 9-run orthogonal array on an economy with 6 mining facilities, 12 industries, 8 market centers, and 8 transport hubs show that the level of firm interdependence, followed by transit speed, has the most significant impact on economic productivity. The principal component analysis (PCA) indicates that interdependence and transit speed can explain 90.27% of the variance in the data. According to the findings of this research, a dependable and efficient regional transportation network among various types of industries is critical for regional economic development.展开更多
文摘The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.
文摘This study uses a simulation-based approach to investigate the impact of delivery delays due to constraints on transport capacity, transit speed, and routing efficiencies on an economy with various levels of interdependency among firms. The simulation uses object-oriented programming to create specialized production, consumption, and transportation classes. A set of objects from each class is distributed randomly on a 2D plane. A road network is then established between fixed objects using Prim’s MST (Minimum Spanning Tree) algorithm, followed by construction of an all-pair shortest path matrix using the Floyd Warshall algorithm. A genetic algorithm-based vehicle routing problem solver employs the all-pair shortest path matrix to best plan multiple pickup and delivery orders. Production units utilize economic order quantities (EOQ) and reorder points (ROP) to manage inventory levels. Hicksian and Marshallian demand functions are utilized by consumption units to maximize personal utility. The transport capacity, transit speed, routing efficiency, and level of interdependence serve as 4 factors in the simulation, each assigned 3 distinct levels. Federov’s exchange algorithm is used to generate an orthogonal array to reduce the number of combination replays from 3<sup>4</sup> to just 9. The simulation results of a 9-run orthogonal array on an economy with 6 mining facilities, 12 industries, 8 market centers, and 8 transport hubs show that the level of firm interdependence, followed by transit speed, has the most significant impact on economic productivity. The principal component analysis (PCA) indicates that interdependence and transit speed can explain 90.27% of the variance in the data. According to the findings of this research, a dependable and efficient regional transportation network among various types of industries is critical for regional economic development.