Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive con...Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive consumer feedback in product development stages,failing to cover the gap between physical and digital spaces.This work mines real-world consumer feedbacks through social media topics,which is significant to product development.We specifically analyze the prevalent time of a product topic,giving an insight into both consumer attention and the widely-discussed time of a product.The primary body of current studies regards the prevalent time prediction as an accompanying task or assumes the existence of a preset distribution.Therefore,these proposed solutions are either biased in focused objectives and underlying patterns or weak in the capability of generalization towards diverse topics.To this end,this work combines deep learning and survival analysis to predict the prevalent time of topics.We propose a specialized deep survival model which consists of two modules.The first module enriches input covariates by incorporating latent features of the time-varying text,and the second module fully captures the temporal pattern of a rumor by a recurrent network structure.Moreover,a specific loss function different from regular survival models is proposed to achieve a more reasonable prediction.Extensive experiments on real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods.展开更多
Spirulina, a protein-rich cyanobacterium, and Bilberry, a dark berry, have the potential to be used as functional food ingredients in the food industry. These two underexplored and underutilized ingredients were used ...Spirulina, a protein-rich cyanobacterium, and Bilberry, a dark berry, have the potential to be used as functional food ingredients in the food industry. These two underexplored and underutilized ingredients were used to develop an adolescent-friendly functional snack food product in the light of food industry trends. Stages of product development, shelf life/physiochemical analysis (texture, pH, color, and water activity) and sensory evaluation were utilized in developing a functional snack mini muffin containing Spirulina and Bilberry. Aqueous (AQ) and 80% ethanol (ET) extracts of mini muffin formulations (chocolate, 1% Spirulina (S) + 4% Bilberry (B), 2% Spirulina (S) + 8% Bilberry (B)) were prepared using a standard protocol. Antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Potential (FRAP) assays. Utilizing a 5-point hedonic scale (1—Dislike very much, 2—Dislike a little, 3—Neither like nor dislike, 4—Like a little, 5—Like very much), 3 mini muffin formulations (chocolate, 1% S + 4% B, 2% S +8% B), were tested among consumer panelists, with 1% S + 4% B being the most acceptable based on taste, texture, color, aroma, appearance, etc. Texture (post-peak (N) of the mini muffin did not vary between chocolate and 1 S% + 4% B formulations;however, 2% S + 8% B was 1.09 times higher compared to its counterparts. pH, color, and water activity remained constant over the 9-day shelf-life period. The Spirulina and Bilberry muffins developed exhibited antioxidant activities (highest in 2% S + 8% B), and were accepted by the sensory panelists for color, taste, mouthfeel, and aroma (panelists preferred 1% S + 4% B).展开更多
In recent years, the trend of people choosing relic and museum tourism during their vacationand leisure time is growing day by day, mainly because it touches people's feelings about historical relicsand cultural h...In recent years, the trend of people choosing relic and museum tourism during their vacationand leisure time is growing day by day, mainly because it touches people's feelings about historical relicsand cultural heritage. The development of relic and museum tourism products is not only the inheritanceof culture and the protection of cultural relics, but also the promotion of tourism consumption under thebackground of cultural tourism integration, which has promoted the development of regional economy.With the relic and museum tourism resources in Shandong Province as the research object, through theanalysis of its resources, market and products, this paper put forward three applicable modes of relic andmuseum tourism product development, including independent development, joint development, and artauthorization, and proposed specific suggestions around the three modes.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a c...With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a compelling avenue. This review uniquely focuses on harnessing the synergy between ML and computational modeling(CM) or optimization tools, as well as integrating multiple ML techniques with CM, for the synthesis of diverse hydrogen evolution reaction(HER) catalysts and various hydrogen production processes(HPPs). Furthermore, this review addresses a notable gap in the literature by offering insights, analyzing challenges, and identifying research prospects and opportunities for sustainable hydrogen production. While the literature reflects a promising landscape for ML applications in hydrogen energy domains, transitioning AI-based algorithms from controlled environments to real-world applications poses significant challenges. Hence, this comprehensive review delves into the technical,practical, and ethical considerations associated with the application of ML in HER catalyst development and HPP optimization. Overall, this review provides guidance for unlocking the transformative potential of ML in enhancing prediction efficiency and sustainability in the hydrogen production sector.展开更多
The burgeoning field of bioengineering has witnessed significant strides due to the advent of stem cell models,particularly in their application in advanced therapy medicinal products(ATMPs).In this review,we examine ...The burgeoning field of bioengineering has witnessed significant strides due to the advent of stem cell models,particularly in their application in advanced therapy medicinal products(ATMPs).In this review,we examine the multifaceted impact of these developments,emphasizing the potential of stem cell models to enhance the sophistication of ATMPs and to offer alternatives to animal testing.Stem cell-derived tissues are particularly promising because they can reshape the preclinical landscape by providing more physiologically relevant and ethically sound platforms for drug screening and disease modelling.We also discuss the critical challenges of reproducibility and accuracy in measurements to ensure the integrity and utility of stem cell models in research and application.Moreover,this review highlights the imperative of stem cell models to align with regulatory standards,ensuring using stem cells in ATMPs translates into safe and effective clinical therapies.With regulatory approval serving as a gateway to clinical adoption,the collaborative efforts between scientists and regulators are vital for the progression of stem cell applications from bench to bedside.We advocate for a balanced approach that nurtures innovation within the framework of rigorous validation and regulatory compliance,ensuring that stem cell-base solutions are maximized to promote public trust and patient health in ATMPs.展开更多
Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of...Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of 276 prefecture-level cities in China's Mainland from 2010 to 2020,and employing methods such as intermediary and threshold models,this study empirically analyzes the internal mechanism of EGT’s impact on urban carbon productivity(UCP).Our findings demonstrate that:①The overall EGT during the analyzed period is not conducive to improving UCP.This conclusion remains valid after a series of robustness tests.This effect is more pronounced in the central region and resource-based cities than in the east-west region and non resource-based cities.②EGT not only directly suppresses UCP but also exerts indirect negative impacts on UCP from three aspects:delaying the digital economy(DE),constraining financial expansion(FE),and hindering green technology innovation(GTI).This negative indirect effect is similar to or even surpasses the direct effect,suggesting that the internal relationship between EGT and“dual-carbon”goals should be re-evaluated from a new compound perspective.③EGT not only has a simple linear impact on UCP but also significantly exhibits a dynamic evolution pattern in inverted“U”shape.That is,as EGT continuously upgrades,a nonlinear impact on UCP emerges in the form of“promoting first,suppressing later”.This indicates that surpassing the“degree”limit for EGT will be detrimental to the improvement of UCP.This study broadens the scope of carbon productivity analysis by introducing a new perspective centered on EGT.The insights gleaned from this research offer valuable guidance for local governments to effectively manage economic growth expectations and promote the synchronized achievement of dual-carbon objectives.展开更多
The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided t...The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.展开更多
China’s new quality productive forces theory and actions are a Chinese solution for win-win cooperation and common development by sharing development opportunities.THE third plenary session of the 20th Central Commit...China’s new quality productive forces theory and actions are a Chinese solution for win-win cooperation and common development by sharing development opportunities.THE third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.The reforms will give impetus to both China’s development and common global prosperity.China’s new quality productive forces theory and actions taken vis-à-vis them indicate the development path of Chinese socialism and are a Chinese solution for win-win cooperation and common development by sharing development opportunities.展开更多
In order to further clarify the function and important value of the integration of production and education for the development of vocational education,this paper combed the development context of the integration of p...In order to further clarify the function and important value of the integration of production and education for the development of vocational education,this paper combed the development context of the integration of production and education in China's vocational education from three dimensions:policy evolution,research evolution and practice promotion.Studies have shown that the integration of production and education,as a distinctive type characteristic of vocational education in China,has experienced four stages of evolution in policy:the period of combination of production and education,the preparation and presentation period,the full implementation period and the in-depth promotion period,and the initially-constructed institutional system reflects developmental characteristics.In academic research,there are obvious policy-driven characteristics.The theoretical framework tends to be perfect,and the concept connotation and promotion path are gradually getting clear,but the research on regional promotion modes is slightly insufficient.The empirical research is weak,and the operability of countermeasure research is not strong.Moreover,the problem of discussing integration based on education is more prominent.In practice and promotion,the characteristic of the integration of production and education is gradually highlighted and deepened in terms of talent training,school-running system and school-running mode,and the carriers and contents of the integration of production and education are gradually enriched.展开更多
Utilizing provincial panel data from 2014 to 2020,this study employs a fixed effect model,a threshold effect model,and a spatial lag model to empirically examine the correlation between digital economic development an...Utilizing provincial panel data from 2014 to 2020,this study employs a fixed effect model,a threshold effect model,and a spatial lag model to empirically examine the correlation between digital economic development and carbon productivity.The findings indicate that digital economic development significantly contributes to the enhancement of carbon productivity in the long term.Furthermore,through instrumental variable method,replacement of explanatory variables and other methods to test its endogeneity and stability,the results remain robust.In terms of regional heterogeneity,the impact of digital economic development on carbon productivity is less pronounced in the central and western regions compared to the eastern region.Additionally,further investigation reveals that industrial structure upgrading and science and technology investment level exhibit different threshold effects on the influence of digital economy development level on carbon productivity.Moreover,there is a significant spatial spillover effect of digital economy development on carbon productivity with H-H and L-L agglomeration spatial correlation.展开更多
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate...Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.展开更多
In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting t...In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.展开更多
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
As a product of the deep integration of financial technology and the digital economy,digital finance plays a significant role in promoting the development of new quality productivity.This paper first elaborates on the...As a product of the deep integration of financial technology and the digital economy,digital finance plays a significant role in promoting the development of new quality productivity.This paper first elaborates on the connotations of new quality productivity and digital finance and analyzes the mechanisms by which digital finance promotes the development of new quality productivity from both theoretical and practical perspectives.The aim is to explore the value digital finance brings to the development of new quality productivity,along with the challenges it faces,in order to propose corresponding policy recommendations.展开更多
The discourse on developing high-quality productivity marks a significant theoretical innovation,which is conducive to the modernization and sinicization of Marxism.It refines our understanding of“new quality product...The discourse on developing high-quality productivity marks a significant theoretical innovation,which is conducive to the modernization and sinicization of Marxism.It refines our understanding of“new quality productivity,”defining it as an advanced form driven by innovation,embodying“high technology,efficiency,and quality,”with the aim of comprehensively enhancing productivity.It elucidates the necessity of cultivating such forces,asserting that they are crucial for achieving high-quality development,securing a leading position in global technology,and fulfilling the aspirations for a better life.Moreover,it outlines a new implementation route,emphasizing strategies such as fostering technological autonomy,nurturing emerging industries,integrating education and talent in technology,adopting a“build through challenges”approach,adjusting solutions locally,and providing categorized guidance,all of which are based on the ongoing comprehensive reforms.展开更多
BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notabl...BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.展开更多
With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become...With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.展开更多
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
基金supported by Sichuan Science and Technology Program(Nos.2019YFG0507,2020YFG0328 and 2021YFG0018)by National Natural Science Foundation of China(NSFC)under Grant No.U19A2059+1 种基金by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No.61802050by the Fundamental Research Funds for the Central Universities(No.ZYGX2021J019).
文摘Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive consumer feedback in product development stages,failing to cover the gap between physical and digital spaces.This work mines real-world consumer feedbacks through social media topics,which is significant to product development.We specifically analyze the prevalent time of a product topic,giving an insight into both consumer attention and the widely-discussed time of a product.The primary body of current studies regards the prevalent time prediction as an accompanying task or assumes the existence of a preset distribution.Therefore,these proposed solutions are either biased in focused objectives and underlying patterns or weak in the capability of generalization towards diverse topics.To this end,this work combines deep learning and survival analysis to predict the prevalent time of topics.We propose a specialized deep survival model which consists of two modules.The first module enriches input covariates by incorporating latent features of the time-varying text,and the second module fully captures the temporal pattern of a rumor by a recurrent network structure.Moreover,a specific loss function different from regular survival models is proposed to achieve a more reasonable prediction.Extensive experiments on real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods.
文摘Spirulina, a protein-rich cyanobacterium, and Bilberry, a dark berry, have the potential to be used as functional food ingredients in the food industry. These two underexplored and underutilized ingredients were used to develop an adolescent-friendly functional snack food product in the light of food industry trends. Stages of product development, shelf life/physiochemical analysis (texture, pH, color, and water activity) and sensory evaluation were utilized in developing a functional snack mini muffin containing Spirulina and Bilberry. Aqueous (AQ) and 80% ethanol (ET) extracts of mini muffin formulations (chocolate, 1% Spirulina (S) + 4% Bilberry (B), 2% Spirulina (S) + 8% Bilberry (B)) were prepared using a standard protocol. Antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Potential (FRAP) assays. Utilizing a 5-point hedonic scale (1—Dislike very much, 2—Dislike a little, 3—Neither like nor dislike, 4—Like a little, 5—Like very much), 3 mini muffin formulations (chocolate, 1% S + 4% B, 2% S +8% B), were tested among consumer panelists, with 1% S + 4% B being the most acceptable based on taste, texture, color, aroma, appearance, etc. Texture (post-peak (N) of the mini muffin did not vary between chocolate and 1 S% + 4% B formulations;however, 2% S + 8% B was 1.09 times higher compared to its counterparts. pH, color, and water activity remained constant over the 9-day shelf-life period. The Spirulina and Bilberry muffins developed exhibited antioxidant activities (highest in 2% S + 8% B), and were accepted by the sensory panelists for color, taste, mouthfeel, and aroma (panelists preferred 1% S + 4% B).
文摘In recent years, the trend of people choosing relic and museum tourism during their vacationand leisure time is growing day by day, mainly because it touches people's feelings about historical relicsand cultural heritage. The development of relic and museum tourism products is not only the inheritanceof culture and the protection of cultural relics, but also the promotion of tourism consumption under thebackground of cultural tourism integration, which has promoted the development of regional economy.With the relic and museum tourism resources in Shandong Province as the research object, through theanalysis of its resources, market and products, this paper put forward three applicable modes of relic andmuseum tourism product development, including independent development, joint development, and artauthorization, and proposed specific suggestions around the three modes.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
基金express their gratitude to the Higher Institution Centre of Excellence (HICoE) fund under the project code (JPT.S(BPKI)2000/016/018/015JId.4(21)/2022002HICOE)Universiti Tenaga Nasional (UNITEN) for funding the research through the (J510050002–IC–6 BOLDREFRESH2025)Akaun Amanah Industri Bekalan Elektrik (AAIBE) Chair of Renewable Energy grant,and NEC Energy Transition Grant (202203003ETG)。
文摘With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a compelling avenue. This review uniquely focuses on harnessing the synergy between ML and computational modeling(CM) or optimization tools, as well as integrating multiple ML techniques with CM, for the synthesis of diverse hydrogen evolution reaction(HER) catalysts and various hydrogen production processes(HPPs). Furthermore, this review addresses a notable gap in the literature by offering insights, analyzing challenges, and identifying research prospects and opportunities for sustainable hydrogen production. While the literature reflects a promising landscape for ML applications in hydrogen energy domains, transitioning AI-based algorithms from controlled environments to real-world applications poses significant challenges. Hence, this comprehensive review delves into the technical,practical, and ethical considerations associated with the application of ML in HER catalyst development and HPP optimization. Overall, this review provides guidance for unlocking the transformative potential of ML in enhancing prediction efficiency and sustainability in the hydrogen production sector.
基金Supported by São Paulo Research Foundation/FAPESP,No.2020/11564-6 and No.2019/27001-3the National Council for Scientific and Technological Development/CNPq,No.400030/2018-7Network NanoHealth/FAPERJ,No.E-26/10.000981/2019 and No.E-26/010.000210/2019/FAPERJ。
文摘The burgeoning field of bioengineering has witnessed significant strides due to the advent of stem cell models,particularly in their application in advanced therapy medicinal products(ATMPs).In this review,we examine the multifaceted impact of these developments,emphasizing the potential of stem cell models to enhance the sophistication of ATMPs and to offer alternatives to animal testing.Stem cell-derived tissues are particularly promising because they can reshape the preclinical landscape by providing more physiologically relevant and ethically sound platforms for drug screening and disease modelling.We also discuss the critical challenges of reproducibility and accuracy in measurements to ensure the integrity and utility of stem cell models in research and application.Moreover,this review highlights the imperative of stem cell models to align with regulatory standards,ensuring using stem cells in ATMPs translates into safe and effective clinical therapies.With regulatory approval serving as a gateway to clinical adoption,the collaborative efforts between scientists and regulators are vital for the progression of stem cell applications from bench to bedside.We advocate for a balanced approach that nurtures innovation within the framework of rigorous validation and regulatory compliance,ensuring that stem cell-base solutions are maximized to promote public trust and patient health in ATMPs.
基金supported by the National Natural Science Foundation of China[Grant No.72163018]Ministry of Education Humanities and Social Science Planning Fund Project[Grant No.23YJA790026]Yunnan Province Basic Research Program General Project[Grant No.202401AT070393].
文摘Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of 276 prefecture-level cities in China's Mainland from 2010 to 2020,and employing methods such as intermediary and threshold models,this study empirically analyzes the internal mechanism of EGT’s impact on urban carbon productivity(UCP).Our findings demonstrate that:①The overall EGT during the analyzed period is not conducive to improving UCP.This conclusion remains valid after a series of robustness tests.This effect is more pronounced in the central region and resource-based cities than in the east-west region and non resource-based cities.②EGT not only directly suppresses UCP but also exerts indirect negative impacts on UCP from three aspects:delaying the digital economy(DE),constraining financial expansion(FE),and hindering green technology innovation(GTI).This negative indirect effect is similar to or even surpasses the direct effect,suggesting that the internal relationship between EGT and“dual-carbon”goals should be re-evaluated from a new compound perspective.③EGT not only has a simple linear impact on UCP but also significantly exhibits a dynamic evolution pattern in inverted“U”shape.That is,as EGT continuously upgrades,a nonlinear impact on UCP emerges in the form of“promoting first,suppressing later”.This indicates that surpassing the“degree”limit for EGT will be detrimental to the improvement of UCP.This study broadens the scope of carbon productivity analysis by introducing a new perspective centered on EGT.The insights gleaned from this research offer valuable guidance for local governments to effectively manage economic growth expectations and promote the synchronized achievement of dual-carbon objectives.
文摘The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.
文摘China’s new quality productive forces theory and actions are a Chinese solution for win-win cooperation and common development by sharing development opportunities.THE third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.The reforms will give impetus to both China’s development and common global prosperity.China’s new quality productive forces theory and actions taken vis-à-vis them indicate the development path of Chinese socialism and are a Chinese solution for win-win cooperation and common development by sharing development opportunities.
文摘In order to further clarify the function and important value of the integration of production and education for the development of vocational education,this paper combed the development context of the integration of production and education in China's vocational education from three dimensions:policy evolution,research evolution and practice promotion.Studies have shown that the integration of production and education,as a distinctive type characteristic of vocational education in China,has experienced four stages of evolution in policy:the period of combination of production and education,the preparation and presentation period,the full implementation period and the in-depth promotion period,and the initially-constructed institutional system reflects developmental characteristics.In academic research,there are obvious policy-driven characteristics.The theoretical framework tends to be perfect,and the concept connotation and promotion path are gradually getting clear,but the research on regional promotion modes is slightly insufficient.The empirical research is weak,and the operability of countermeasure research is not strong.Moreover,the problem of discussing integration based on education is more prominent.In practice and promotion,the characteristic of the integration of production and education is gradually highlighted and deepened in terms of talent training,school-running system and school-running mode,and the carriers and contents of the integration of production and education are gradually enriched.
文摘Utilizing provincial panel data from 2014 to 2020,this study employs a fixed effect model,a threshold effect model,and a spatial lag model to empirically examine the correlation between digital economic development and carbon productivity.The findings indicate that digital economic development significantly contributes to the enhancement of carbon productivity in the long term.Furthermore,through instrumental variable method,replacement of explanatory variables and other methods to test its endogeneity and stability,the results remain robust.In terms of regional heterogeneity,the impact of digital economic development on carbon productivity is less pronounced in the central and western regions compared to the eastern region.Additionally,further investigation reveals that industrial structure upgrading and science and technology investment level exhibit different threshold effects on the influence of digital economy development level on carbon productivity.Moreover,there is a significant spatial spillover effect of digital economy development on carbon productivity with H-H and L-L agglomeration spatial correlation.
文摘Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.
基金supported by the Japan Society for the Promotion of Science KAKENHI(grant Nos.23K05678 to IM,19H05711 and 20H00466 to KS)the Joint Research Program of Institute for Molecular and Cellular Regulation,Gunma University(to KS)。
文摘In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
文摘As a product of the deep integration of financial technology and the digital economy,digital finance plays a significant role in promoting the development of new quality productivity.This paper first elaborates on the connotations of new quality productivity and digital finance and analyzes the mechanisms by which digital finance promotes the development of new quality productivity from both theoretical and practical perspectives.The aim is to explore the value digital finance brings to the development of new quality productivity,along with the challenges it faces,in order to propose corresponding policy recommendations.
基金The 2024 Chongqing Education Commission Humanities and Social Sciences Research Ideological and Political Education Special Project“Research on the Inner Logic and Practical Path of Empowering‘Digital Ideological and Political Education’with New Qualitative Productivity”(24SKSZ026)The 2024 Chongqing Education Commission Humanities and Social Sciences Research Ideological and Political Education Special Project“Research on the Value Connotation and Educational Path of‘Labor Innovation Collaboration’in Universities”(24SKSZ027)The 2023 Chongqing University of Posts and Telecommunications Education Reform Research Project“Innovation and Entrepreneurship Education Model Reform and Practice in New Engineering Talent Training:From the Perspective of the Second Classroom”(XJG23224)。
文摘The discourse on developing high-quality productivity marks a significant theoretical innovation,which is conducive to the modernization and sinicization of Marxism.It refines our understanding of“new quality productivity,”defining it as an advanced form driven by innovation,embodying“high technology,efficiency,and quality,”with the aim of comprehensively enhancing productivity.It elucidates the necessity of cultivating such forces,asserting that they are crucial for achieving high-quality development,securing a leading position in global technology,and fulfilling the aspirations for a better life.Moreover,it outlines a new implementation route,emphasizing strategies such as fostering technological autonomy,nurturing emerging industries,integrating education and talent in technology,adopting a“build through challenges”approach,adjusting solutions locally,and providing categorized guidance,all of which are based on the ongoing comprehensive reforms.
文摘BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.
文摘With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.