Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive con...Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive consumer feedback in product development stages,failing to cover the gap between physical and digital spaces.This work mines real-world consumer feedbacks through social media topics,which is significant to product development.We specifically analyze the prevalent time of a product topic,giving an insight into both consumer attention and the widely-discussed time of a product.The primary body of current studies regards the prevalent time prediction as an accompanying task or assumes the existence of a preset distribution.Therefore,these proposed solutions are either biased in focused objectives and underlying patterns or weak in the capability of generalization towards diverse topics.To this end,this work combines deep learning and survival analysis to predict the prevalent time of topics.We propose a specialized deep survival model which consists of two modules.The first module enriches input covariates by incorporating latent features of the time-varying text,and the second module fully captures the temporal pattern of a rumor by a recurrent network structure.Moreover,a specific loss function different from regular survival models is proposed to achieve a more reasonable prediction.Extensive experiments on real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods.展开更多
In recent years, the trend of people choosing relic and museum tourism during their vacationand leisure time is growing day by day, mainly because it touches people's feelings about historical relicsand cultural h...In recent years, the trend of people choosing relic and museum tourism during their vacationand leisure time is growing day by day, mainly because it touches people's feelings about historical relicsand cultural heritage. The development of relic and museum tourism products is not only the inheritanceof culture and the protection of cultural relics, but also the promotion of tourism consumption under thebackground of cultural tourism integration, which has promoted the development of regional economy.With the relic and museum tourism resources in Shandong Province as the research object, through theanalysis of its resources, market and products, this paper put forward three applicable modes of relic andmuseum tourism product development, including independent development, joint development, and artauthorization, and proposed specific suggestions around the three modes.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of...Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of 276 prefecture-level cities in China's Mainland from 2010 to 2020,and employing methods such as intermediary and threshold models,this study empirically analyzes the internal mechanism of EGT’s impact on urban carbon productivity(UCP).Our findings demonstrate that:①The overall EGT during the analyzed period is not conducive to improving UCP.This conclusion remains valid after a series of robustness tests.This effect is more pronounced in the central region and resource-based cities than in the east-west region and non resource-based cities.②EGT not only directly suppresses UCP but also exerts indirect negative impacts on UCP from three aspects:delaying the digital economy(DE),constraining financial expansion(FE),and hindering green technology innovation(GTI).This negative indirect effect is similar to or even surpasses the direct effect,suggesting that the internal relationship between EGT and“dual-carbon”goals should be re-evaluated from a new compound perspective.③EGT not only has a simple linear impact on UCP but also significantly exhibits a dynamic evolution pattern in inverted“U”shape.That is,as EGT continuously upgrades,a nonlinear impact on UCP emerges in the form of“promoting first,suppressing later”.This indicates that surpassing the“degree”limit for EGT will be detrimental to the improvement of UCP.This study broadens the scope of carbon productivity analysis by introducing a new perspective centered on EGT.The insights gleaned from this research offer valuable guidance for local governments to effectively manage economic growth expectations and promote the synchronized achievement of dual-carbon objectives.展开更多
The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided t...The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.展开更多
China’s new quality productive forces theory and actions are a Chinese solution for win-win cooperation and common development by sharing development opportunities.THE third plenary session of the 20th Central Commit...China’s new quality productive forces theory and actions are a Chinese solution for win-win cooperation and common development by sharing development opportunities.THE third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.The reforms will give impetus to both China’s development and common global prosperity.China’s new quality productive forces theory and actions taken vis-à-vis them indicate the development path of Chinese socialism and are a Chinese solution for win-win cooperation and common development by sharing development opportunities.展开更多
In order to further clarify the function and important value of the integration of production and education for the development of vocational education,this paper combed the development context of the integration of p...In order to further clarify the function and important value of the integration of production and education for the development of vocational education,this paper combed the development context of the integration of production and education in China's vocational education from three dimensions:policy evolution,research evolution and practice promotion.Studies have shown that the integration of production and education,as a distinctive type characteristic of vocational education in China,has experienced four stages of evolution in policy:the period of combination of production and education,the preparation and presentation period,the full implementation period and the in-depth promotion period,and the initially-constructed institutional system reflects developmental characteristics.In academic research,there are obvious policy-driven characteristics.The theoretical framework tends to be perfect,and the concept connotation and promotion path are gradually getting clear,but the research on regional promotion modes is slightly insufficient.The empirical research is weak,and the operability of countermeasure research is not strong.Moreover,the problem of discussing integration based on education is more prominent.In practice and promotion,the characteristic of the integration of production and education is gradually highlighted and deepened in terms of talent training,school-running system and school-running mode,and the carriers and contents of the integration of production and education are gradually enriched.展开更多
Utilizing provincial panel data from 2014 to 2020,this study employs a fixed effect model,a threshold effect model,and a spatial lag model to empirically examine the correlation between digital economic development an...Utilizing provincial panel data from 2014 to 2020,this study employs a fixed effect model,a threshold effect model,and a spatial lag model to empirically examine the correlation between digital economic development and carbon productivity.The findings indicate that digital economic development significantly contributes to the enhancement of carbon productivity in the long term.Furthermore,through instrumental variable method,replacement of explanatory variables and other methods to test its endogeneity and stability,the results remain robust.In terms of regional heterogeneity,the impact of digital economic development on carbon productivity is less pronounced in the central and western regions compared to the eastern region.Additionally,further investigation reveals that industrial structure upgrading and science and technology investment level exhibit different threshold effects on the influence of digital economy development level on carbon productivity.Moreover,there is a significant spatial spillover effect of digital economy development on carbon productivity with H-H and L-L agglomeration spatial correlation.展开更多
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate...Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.展开更多
The discourse on developing high-quality productivity marks a significant theoretical innovation,which is conducive to the modernization and sinicization of Marxism.It refines our understanding of“new quality product...The discourse on developing high-quality productivity marks a significant theoretical innovation,which is conducive to the modernization and sinicization of Marxism.It refines our understanding of“new quality productivity,”defining it as an advanced form driven by innovation,embodying“high technology,efficiency,and quality,”with the aim of comprehensively enhancing productivity.It elucidates the necessity of cultivating such forces,asserting that they are crucial for achieving high-quality development,securing a leading position in global technology,and fulfilling the aspirations for a better life.Moreover,it outlines a new implementation route,emphasizing strategies such as fostering technological autonomy,nurturing emerging industries,integrating education and talent in technology,adopting a“build through challenges”approach,adjusting solutions locally,and providing categorized guidance,all of which are based on the ongoing comprehensive reforms.展开更多
With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become...With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.展开更多
Presently,ammonia is an ideal candidate for future clean energy.The Haber-Bosch process has been an essential ammonia production process,and it is one of the most important technological advancements since its inventi...Presently,ammonia is an ideal candidate for future clean energy.The Haber-Bosch process has been an essential ammonia production process,and it is one of the most important technological advancements since its invention,sustaining the explosive growth of military munitions industry and fertilizers in the first half of the 20th century.However,the process is facing great challenges:the growing need for ammonia and the demands of environmental protection.High energy consumption and high CO_(2) emissions greatly limit the application of the Haber-Bosch method,and increasing research efforts are devoted to"green"ammonia synthesis.Thermocatalytic,electrocatalytic,and photocatalytic ammonia production under mild conditions and the derived chemical looping and plasma ammonia production methods,have been widely developed.Electrocatalytic and photocatalytic methods,which use low fossil fuels,are naturally being considered as future directions for the development of ammonia production.Although their catalytic efficiency of ammonia generation is not yet sufficient to satisfy the actual demands,considerable progress has been made in terms of regulating structure and morphology of catalyst and improving preparation efficiency.The chemical looping approach of ammonia production differs from the thermocatalytic,electrocatalytic,and photocatalytic methods,and is the method of reusing raw materials.The plasma treatment approach alters the overall ammonia production approach and builds up a new avenue of development in combination with thermal,photocatalytic,and electrocatalytic methods as well.This review discusses several recent effective catalysts for different ammonia production methods and explores mechanisms as well as efficiency of these catalysts for catalytic N2fixation of ammonia.展开更多
The 3D simulation in preoperative design for nasal plastic surgery was studied to help patients see the postoperative effects and reduce medical disputes.The study developed and clinically tested an innovative design ...The 3D simulation in preoperative design for nasal plastic surgery was studied to help patients see the postoperative effects and reduce medical disputes.The study developed and clinically tested an innovative design for surgical guides for nasal plastic surgery,which showed positive results in patient satisfaction and accuracy in achieving the preoperative simulated effect.The study also investigated the process of designing and producing nasal prostheses and how patient feedback could be obtained using third-party social media voting.Patient satisfaction information was collected and evaluated using the Likert scale,and the data statistical analysis was carried out with the SPSS19.0 software.More than 94.1% of the patients were satisfied with the postoperative results.The study provides a good reference case for the integration of knowledge and skills from the medicine,design,and engineering fields in the development of medical devices.展开更多
Nuclear factor Y(NF-Y),a group of conserved transcription-factor complexes that consist of NF-YA,B,and C subunits,is essential for developmental regulation and for responses to environmental changes in eukaryotes.We p...Nuclear factor Y(NF-Y),a group of conserved transcription-factor complexes that consist of NF-YA,B,and C subunits,is essential for developmental regulation and for responses to environmental changes in eukaryotes.We previously found that some NF-Y genes,such as OsNF-YA8,were expressed specifically in the endosperm of rice.In the present study,overexpression of OsNF-YA8 in rice resulted in reduced plant height due to suppressed cell elongation in internodes.Gibberellin(GA)biosynthetic genes,including OsCPS1,OsGA20ox1,and OsGA20ox2,were down-regulated.OsNF-YA8 bound to the promoters of these genes to repress their expression.Endogenous GA content was decreased in OsNF-YA8 overexpressors,whose dwarf phenotype could be partially rescued by exogenous GA treatment.The findings suggested that ectopic expression of OsNF-YA8 causes defective GA biosynthesis in vegetative stage.Heading date in OsNF-YA8 overexpressors was delayed,especially under short-day conditions.OsNFYA8 bound to the promoter of Heading Date 3a(Hd3a),the florigen gene in rice,to negatively regulate flowering.Either ectopic activation or knockout of OsNF-YA8 impaired seed development,as indicated by reduced seed size and increased grain chalkiness.These results suggest that ectopic expression of the endosperm-specific OsNF-YA8 in rice disrupts both vegetative and reproductive development.展开更多
The continuous growth of recoverable reserves in a waterflooding oilfield has a significant impact on the patterns of production evolution. A new production evolution model is established by improving the Weng Cycle m...The continuous growth of recoverable reserves in a waterflooding oilfield has a significant impact on the patterns of production evolution. A new production evolution model is established by improving the Weng Cycle model. With the new model, the statistical correspondence between the production decline stage and the reserve-production imbalance is clarified,and the correlation of water cut with the recovery percent of recoverable reserves is discussed, providing quantitative basis of reservoir engineering for dividing development stages of oilfield and defining mature oilfields. According to the statistics of oilfields in eastern China, the time point corresponding to the reserve-production balance coefficient dropping to less than 1dramatically is well correlated the beginning point of production decline, thus the time when the reserve-production balance coefficient drops dramatically can be taken as the initiation point of production decline stage. The research results show that the water cut and the recovery percent of recoverable reserves have a good statistical match in the high water cut stage, and it is more rational to take both the start point of production decline stage and the water cut of 90%(or the recovery percent of recoverable reserves of 80%) as the critical criteria for defining a mature oilfield. Five production evolution patterns can be summarized as follows: growth–peak plateau–stepped decline, growth–stepped stabilizing–stepped decline, growth–stepped stabilizing–rapid decline, growth–peak plateau–rapid decline, and growth–continuous decline.展开更多
This study aims to shed light on the effects of financial development and accumula-tion of capital on the productivity of labor in the sub-Sahara African region within the period of 1990–2018.In this work,we used the...This study aims to shed light on the effects of financial development and accumula-tion of capital on the productivity of labor in the sub-Sahara African region within the period of 1990–2018.In this work,we used the(dynamic)common correlated effects estimator-mean group and additional techniques such as cross-section autoregressive distributed lag to calibrate the sample into the African subregion to ensure robustness.The findings reveal that financial progress in the region over time leads to an increase in productivity of labor and also the accumulation of capital.Furthermore,financial markets have a progressive impact on the productivity of labor within sub-Saharan African regions.We extend the very limited literature on the nexus between financial development and labor productivity by incorporating capital accumulation into our model which has not been previously studied.展开更多
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d...Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.展开更多
Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lili...Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.展开更多
Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only ...Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.展开更多
基金supported by Sichuan Science and Technology Program(Nos.2019YFG0507,2020YFG0328 and 2021YFG0018)by National Natural Science Foundation of China(NSFC)under Grant No.U19A2059+1 种基金by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No.61802050by the Fundamental Research Funds for the Central Universities(No.ZYGX2021J019).
文摘Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive consumer feedback in product development stages,failing to cover the gap between physical and digital spaces.This work mines real-world consumer feedbacks through social media topics,which is significant to product development.We specifically analyze the prevalent time of a product topic,giving an insight into both consumer attention and the widely-discussed time of a product.The primary body of current studies regards the prevalent time prediction as an accompanying task or assumes the existence of a preset distribution.Therefore,these proposed solutions are either biased in focused objectives and underlying patterns or weak in the capability of generalization towards diverse topics.To this end,this work combines deep learning and survival analysis to predict the prevalent time of topics.We propose a specialized deep survival model which consists of two modules.The first module enriches input covariates by incorporating latent features of the time-varying text,and the second module fully captures the temporal pattern of a rumor by a recurrent network structure.Moreover,a specific loss function different from regular survival models is proposed to achieve a more reasonable prediction.Extensive experiments on real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods.
文摘In recent years, the trend of people choosing relic and museum tourism during their vacationand leisure time is growing day by day, mainly because it touches people's feelings about historical relicsand cultural heritage. The development of relic and museum tourism products is not only the inheritanceof culture and the protection of cultural relics, but also the promotion of tourism consumption under thebackground of cultural tourism integration, which has promoted the development of regional economy.With the relic and museum tourism resources in Shandong Province as the research object, through theanalysis of its resources, market and products, this paper put forward three applicable modes of relic andmuseum tourism product development, including independent development, joint development, and artauthorization, and proposed specific suggestions around the three modes.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
基金supported by the National Natural Science Foundation of China[Grant No.72163018]Ministry of Education Humanities and Social Science Planning Fund Project[Grant No.23YJA790026]Yunnan Province Basic Research Program General Project[Grant No.202401AT070393].
文摘Maintaining moderate economic growth targets(EGTs)is the key for local governments to effectively implement the“carbon peak and carbon neutrality”goals under the refreshed development pattern.Utilizing panel data of 276 prefecture-level cities in China's Mainland from 2010 to 2020,and employing methods such as intermediary and threshold models,this study empirically analyzes the internal mechanism of EGT’s impact on urban carbon productivity(UCP).Our findings demonstrate that:①The overall EGT during the analyzed period is not conducive to improving UCP.This conclusion remains valid after a series of robustness tests.This effect is more pronounced in the central region and resource-based cities than in the east-west region and non resource-based cities.②EGT not only directly suppresses UCP but also exerts indirect negative impacts on UCP from three aspects:delaying the digital economy(DE),constraining financial expansion(FE),and hindering green technology innovation(GTI).This negative indirect effect is similar to or even surpasses the direct effect,suggesting that the internal relationship between EGT and“dual-carbon”goals should be re-evaluated from a new compound perspective.③EGT not only has a simple linear impact on UCP but also significantly exhibits a dynamic evolution pattern in inverted“U”shape.That is,as EGT continuously upgrades,a nonlinear impact on UCP emerges in the form of“promoting first,suppressing later”.This indicates that surpassing the“degree”limit for EGT will be detrimental to the improvement of UCP.This study broadens the scope of carbon productivity analysis by introducing a new perspective centered on EGT.The insights gleaned from this research offer valuable guidance for local governments to effectively manage economic growth expectations and promote the synchronized achievement of dual-carbon objectives.
文摘The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.
文摘China’s new quality productive forces theory and actions are a Chinese solution for win-win cooperation and common development by sharing development opportunities.THE third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas.The reforms will give impetus to both China’s development and common global prosperity.China’s new quality productive forces theory and actions taken vis-à-vis them indicate the development path of Chinese socialism and are a Chinese solution for win-win cooperation and common development by sharing development opportunities.
文摘In order to further clarify the function and important value of the integration of production and education for the development of vocational education,this paper combed the development context of the integration of production and education in China's vocational education from three dimensions:policy evolution,research evolution and practice promotion.Studies have shown that the integration of production and education,as a distinctive type characteristic of vocational education in China,has experienced four stages of evolution in policy:the period of combination of production and education,the preparation and presentation period,the full implementation period and the in-depth promotion period,and the initially-constructed institutional system reflects developmental characteristics.In academic research,there are obvious policy-driven characteristics.The theoretical framework tends to be perfect,and the concept connotation and promotion path are gradually getting clear,but the research on regional promotion modes is slightly insufficient.The empirical research is weak,and the operability of countermeasure research is not strong.Moreover,the problem of discussing integration based on education is more prominent.In practice and promotion,the characteristic of the integration of production and education is gradually highlighted and deepened in terms of talent training,school-running system and school-running mode,and the carriers and contents of the integration of production and education are gradually enriched.
文摘Utilizing provincial panel data from 2014 to 2020,this study employs a fixed effect model,a threshold effect model,and a spatial lag model to empirically examine the correlation between digital economic development and carbon productivity.The findings indicate that digital economic development significantly contributes to the enhancement of carbon productivity in the long term.Furthermore,through instrumental variable method,replacement of explanatory variables and other methods to test its endogeneity and stability,the results remain robust.In terms of regional heterogeneity,the impact of digital economic development on carbon productivity is less pronounced in the central and western regions compared to the eastern region.Additionally,further investigation reveals that industrial structure upgrading and science and technology investment level exhibit different threshold effects on the influence of digital economy development level on carbon productivity.Moreover,there is a significant spatial spillover effect of digital economy development on carbon productivity with H-H and L-L agglomeration spatial correlation.
文摘Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.
基金The 2024 Chongqing Education Commission Humanities and Social Sciences Research Ideological and Political Education Special Project“Research on the Inner Logic and Practical Path of Empowering‘Digital Ideological and Political Education’with New Qualitative Productivity”(24SKSZ026)The 2024 Chongqing Education Commission Humanities and Social Sciences Research Ideological and Political Education Special Project“Research on the Value Connotation and Educational Path of‘Labor Innovation Collaboration’in Universities”(24SKSZ027)The 2023 Chongqing University of Posts and Telecommunications Education Reform Research Project“Innovation and Entrepreneurship Education Model Reform and Practice in New Engineering Talent Training:From the Perspective of the Second Classroom”(XJG23224)。
文摘The discourse on developing high-quality productivity marks a significant theoretical innovation,which is conducive to the modernization and sinicization of Marxism.It refines our understanding of“new quality productivity,”defining it as an advanced form driven by innovation,embodying“high technology,efficiency,and quality,”with the aim of comprehensively enhancing productivity.It elucidates the necessity of cultivating such forces,asserting that they are crucial for achieving high-quality development,securing a leading position in global technology,and fulfilling the aspirations for a better life.Moreover,it outlines a new implementation route,emphasizing strategies such as fostering technological autonomy,nurturing emerging industries,integrating education and talent in technology,adopting a“build through challenges”approach,adjusting solutions locally,and providing categorized guidance,all of which are based on the ongoing comprehensive reforms.
文摘With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.
基金the National Natural Science Foundation of China (22276194)Institute of Energy of Hefei comprehensive National Science Center (21KZZ501 and 21KZS201)+2 种基金the Presidential Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences (YZJJZX202019)funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant (KEP-PhD: 65-2471443)DSR technical and financial support.
文摘Presently,ammonia is an ideal candidate for future clean energy.The Haber-Bosch process has been an essential ammonia production process,and it is one of the most important technological advancements since its invention,sustaining the explosive growth of military munitions industry and fertilizers in the first half of the 20th century.However,the process is facing great challenges:the growing need for ammonia and the demands of environmental protection.High energy consumption and high CO_(2) emissions greatly limit the application of the Haber-Bosch method,and increasing research efforts are devoted to"green"ammonia synthesis.Thermocatalytic,electrocatalytic,and photocatalytic ammonia production under mild conditions and the derived chemical looping and plasma ammonia production methods,have been widely developed.Electrocatalytic and photocatalytic methods,which use low fossil fuels,are naturally being considered as future directions for the development of ammonia production.Although their catalytic efficiency of ammonia generation is not yet sufficient to satisfy the actual demands,considerable progress has been made in terms of regulating structure and morphology of catalyst and improving preparation efficiency.The chemical looping approach of ammonia production differs from the thermocatalytic,electrocatalytic,and photocatalytic methods,and is the method of reusing raw materials.The plasma treatment approach alters the overall ammonia production approach and builds up a new avenue of development in combination with thermal,photocatalytic,and electrocatalytic methods as well.This review discusses several recent effective catalysts for different ammonia production methods and explores mechanisms as well as efficiency of these catalysts for catalytic N2fixation of ammonia.
文摘The 3D simulation in preoperative design for nasal plastic surgery was studied to help patients see the postoperative effects and reduce medical disputes.The study developed and clinically tested an innovative design for surgical guides for nasal plastic surgery,which showed positive results in patient satisfaction and accuracy in achieving the preoperative simulated effect.The study also investigated the process of designing and producing nasal prostheses and how patient feedback could be obtained using third-party social media voting.Patient satisfaction information was collected and evaluated using the Likert scale,and the data statistical analysis was carried out with the SPSS19.0 software.More than 94.1% of the patients were satisfied with the postoperative results.The study provides a good reference case for the integration of knowledge and skills from the medicine,design,and engineering fields in the development of medical devices.
基金the National Natural Science Foundation of China(31701392 and 32170344)the Six Talent Peaks Project in Jiangsu Province(NY-142)+1 种基金the Jiangsu Province Government(JBGS[2021]001)the Independent Scientific Research Project Funds of the Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding(PLR202101).
文摘Nuclear factor Y(NF-Y),a group of conserved transcription-factor complexes that consist of NF-YA,B,and C subunits,is essential for developmental regulation and for responses to environmental changes in eukaryotes.We previously found that some NF-Y genes,such as OsNF-YA8,were expressed specifically in the endosperm of rice.In the present study,overexpression of OsNF-YA8 in rice resulted in reduced plant height due to suppressed cell elongation in internodes.Gibberellin(GA)biosynthetic genes,including OsCPS1,OsGA20ox1,and OsGA20ox2,were down-regulated.OsNF-YA8 bound to the promoters of these genes to repress their expression.Endogenous GA content was decreased in OsNF-YA8 overexpressors,whose dwarf phenotype could be partially rescued by exogenous GA treatment.The findings suggested that ectopic expression of OsNF-YA8 causes defective GA biosynthesis in vegetative stage.Heading date in OsNF-YA8 overexpressors was delayed,especially under short-day conditions.OsNFYA8 bound to the promoter of Heading Date 3a(Hd3a),the florigen gene in rice,to negatively regulate flowering.Either ectopic activation or knockout of OsNF-YA8 impaired seed development,as indicated by reduced seed size and increased grain chalkiness.These results suggest that ectopic expression of the endosperm-specific OsNF-YA8 in rice disrupts both vegetative and reproductive development.
基金Supported by the National Natural Science Foundation of China (72088101)。
文摘The continuous growth of recoverable reserves in a waterflooding oilfield has a significant impact on the patterns of production evolution. A new production evolution model is established by improving the Weng Cycle model. With the new model, the statistical correspondence between the production decline stage and the reserve-production imbalance is clarified,and the correlation of water cut with the recovery percent of recoverable reserves is discussed, providing quantitative basis of reservoir engineering for dividing development stages of oilfield and defining mature oilfields. According to the statistics of oilfields in eastern China, the time point corresponding to the reserve-production balance coefficient dropping to less than 1dramatically is well correlated the beginning point of production decline, thus the time when the reserve-production balance coefficient drops dramatically can be taken as the initiation point of production decline stage. The research results show that the water cut and the recovery percent of recoverable reserves have a good statistical match in the high water cut stage, and it is more rational to take both the start point of production decline stage and the water cut of 90%(or the recovery percent of recoverable reserves of 80%) as the critical criteria for defining a mature oilfield. Five production evolution patterns can be summarized as follows: growth–peak plateau–stepped decline, growth–stepped stabilizing–stepped decline, growth–stepped stabilizing–rapid decline, growth–peak plateau–rapid decline, and growth–continuous decline.
文摘This study aims to shed light on the effects of financial development and accumula-tion of capital on the productivity of labor in the sub-Sahara African region within the period of 1990–2018.In this work,we used the(dynamic)common correlated effects estimator-mean group and additional techniques such as cross-section autoregressive distributed lag to calibrate the sample into the African subregion to ensure robustness.The findings reveal that financial progress in the region over time leads to an increase in productivity of labor and also the accumulation of capital.Furthermore,financial markets have a progressive impact on the productivity of labor within sub-Saharan African regions.We extend the very limited literature on the nexus between financial development and labor productivity by incorporating capital accumulation into our model which has not been previously studied.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890914)。
文摘Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.
基金supported by the National Key Research and Development Program of China(2022YFD1200500)the Fundamental Research Funds for the Central Universities(KYZZ2022004)+1 种基金the Project for Crop Germplasm Resources Conservation of Jiangsu(2021-SJ-011)the High Level Talent Project of the Top Six Talents in Jiangsu(NY-077)。
文摘Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2023-00302697,2022H1D3A3A01077254)。
文摘Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.