The representation and acquisition of a product gene is a crucial problem in product evolutionary design. A new methodology of product gene representation and acquisition from a population of product cases is proposed...The representation and acquisition of a product gene is a crucial problem in product evolutionary design. A new methodology of product gene representation and acquisition from a population of product cases is proposed, and the methodology for product evolutionary design based on a population of product cases is realized. By properly classifying product cases according to its product species, the populations of product cases are divided and a model is established. Knowledge of the scheme design is extracted and formulated as the function base, principle base, and structure base, which are then combined to form a product gene. Subsequently, the product gene tree is created and represented by object-oriented method. Then combining this method with the evolutionary reasoning technology, an intelligent and automatic evolutionary scheme design of product based on the population of product cases is realized. This design method will be helpful in the processing of knowledge formulation, accumulation, and reuse, and in addressing the difficulty of acquiring design knowledge in traditional design. In addition, the disadvantages of manual case adaptation and update in case-based reasoning can be eliminated. Moreover, by optimizing the design scheme in multiple levels and aspects of product function, principle, and structure etc., the level of creativity in the scheme design can be improved.展开更多
文摘The representation and acquisition of a product gene is a crucial problem in product evolutionary design. A new methodology of product gene representation and acquisition from a population of product cases is proposed, and the methodology for product evolutionary design based on a population of product cases is realized. By properly classifying product cases according to its product species, the populations of product cases are divided and a model is established. Knowledge of the scheme design is extracted and formulated as the function base, principle base, and structure base, which are then combined to form a product gene. Subsequently, the product gene tree is created and represented by object-oriented method. Then combining this method with the evolutionary reasoning technology, an intelligent and automatic evolutionary scheme design of product based on the population of product cases is realized. This design method will be helpful in the processing of knowledge formulation, accumulation, and reuse, and in addressing the difficulty of acquiring design knowledge in traditional design. In addition, the disadvantages of manual case adaptation and update in case-based reasoning can be eliminated. Moreover, by optimizing the design scheme in multiple levels and aspects of product function, principle, and structure etc., the level of creativity in the scheme design can be improved.