The aims of this study were to investigate the food safety knowledge and practices of food handlers and to assess the sanitary conditions of attieke production units in the South of C?te d’Ivoire. A cross-sectional s...The aims of this study were to investigate the food safety knowledge and practices of food handlers and to assess the sanitary conditions of attieke production units in the South of C?te d’Ivoire. A cross-sectional study was conducted during 4 months in 2012 in 7 localities and data were collected using questionnaire and observation checklist and microbiological analysis of hands. A total of 775 attieke production units were involved in this survey. Seventy-one percent (71%) were located on public domains and only 70 production units (9%) used septic tank as a mean of final deposal for liquid waste. Hygiene conditions and practices of food handlers in attieke production units were inadequate. The presence of specific microorganisms such as Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter agglomerans, Citrobacter youngae, Klebsiella oxytoca and Citrobacter freundi was indicative of a degree of ignorance on the part of food handlers towards proper hygienic practices.展开更多
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
In view of the existing situation of gas field development, one kind of method to evaluate the production performance of gas production units (GPUs) was presented in this paper. Among the commonly used indicators of g...In view of the existing situation of gas field development, one kind of method to evaluate the production performance of gas production units (GPUs) was presented in this paper. Among the commonly used indicators of gas field development, we select 11 indicators from the three aspects of production task, gas reservoir management, and production technology. According to the principle of analytic network process (ANP), this paper introduced one kind of new method to get the weights of indicators. By means of the method of TOPSIS, it is easy to obtain the rankings for all the GPUs through calculating the weighted Euclidean distance between each GPU and the positive or negative ideal point. This evaluation method could constantly improve the management level of gas production units and deepen the delicacy management of gas field development.展开更多
Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, shi...Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, ship building, furniture, and decoration to partly take the place of wood, steel, plastic etc in China. This paper briefly described the basic component units, including strip, sliver, and particle, of bamboo-based panel and pointed out that to design the structure of bamboo-based panels should follow the principle of symmetric structure, surface forming method, and structuring principle of equalizing stress. According to the processing methods and formation of component units, the authors classified the bamboo-based panels in China into 13 types and presented the manufacturing technique and uses of the bamboo products, such as plybamboo, bamboo flooring, and bamboo-wood composite products in detail. In the last part of the paper, much information were offered on the output, market, and selling prospect of each type of bamboo-based panels.展开更多
Based on the data from the Cost-benefit Data of Farm Produce and the China Agricultural Yearbook, this paper aims to examine the spatial and temporal change characteristics of total grain production and its affecting ...Based on the data from the Cost-benefit Data of Farm Produce and the China Agricultural Yearbook, this paper aims to examine the spatial and temporal change characteristics of total grain production and its affecting factors. The results show that: 1) During 1980 to 2007, total grain production increased from 3.20 ~ 108 t to 5.02 x 108 t in China, with annual increasing rate of 1.68%. From the regional disparities, most of the regions present increasing trend of total grain production except for several regions with higher level of economic development; 2) Grain sown area decreased from 1.17 × 108 ha in 1980 to 1.06 x 108 ha in 2007, which has negative effect on total grain production; 3) The increase of grain yield per unit area caused by land use intensity changes contributed to the increase of total grain yield greatly. However, as the land use intensity showed that farmers pay more attention to labor-saving input but not yield-increasing input, the less enthusiasm of farmers in grain production may become an important constraint on fu- ture grain production increase in China; 4) Based on the results, this paper proposed different land management poli- cies in different regions, for example, the government should protect cultivated land, promote large scale production. As to the less developed regions, the government should pay more attention to agricultural subsidies to promote farm- ers' enthusiasm in grain production.展开更多
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing...Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.展开更多
The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced lo...The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.展开更多
After many years of exploitation,onshore oil and gas resources are about to enter a recession period.Oil and gas will mainly come from oceans in the future.Generally speaking,the exploration and production(E&P)cos...After many years of exploitation,onshore oil and gas resources are about to enter a recession period.Oil and gas will mainly come from oceans in the future.Generally speaking,the exploration and production(E&P)cost of oil from offshore is much higher than that of oil from onshore,so it is more sensitive to oil price.However,in recent years,oil price has been hovering at a low level for a long time,almost close to or even lower than the E&P cost of oil,which directly affects the development of oilfields.Besides the influence of oil price,some oilfields present the characteristics of marginal reserve scale,short peak production period and output rapidly declining.There leads to short economic life period and makes the economic benefit close to or lower than oilfield’s hurdle rate,which increases the difficulty of offshore oilfield development.As an important part of oilfield development,Floating Production Storage and Offloading unit,its investment mode and rent mode directly affect overall oilfield’s rate of return and the economic life.This paper chooses lease mode as the research object based on the analysis of investment mode,and further puts forward rent mode related with oil price through the analysis of traditional rent mode,and illustrates the advantages and disadvantages of various rent modes and their applicability so that the lessor chooses the right mode to achieve Win-Win with Oil Company and promotes the development of oilfields under low oil price.展开更多
Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot...Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.展开更多
Most measurements for beef improvement in South Africa are per individual (weaning weight, calving interval, growth rate, etc.). A measurement that expresses performance per constant unit, e.g. kilogram calf weaned pe...Most measurements for beef improvement in South Africa are per individual (weaning weight, calving interval, growth rate, etc.). A measurement that expresses performance per constant unit, e.g. kilogram calf weaned per Large Stock Unit (LSU) can eventually be translated to kilogram calf produced per kg CO2 equivalent. A LSU is defined as a bovine requiring 75 MJ Metabolisable Energy (ME) per day. If more kilogram weaner calf can be produced per LSU (KgC/LSU), the carbon footprint of beef can be reduced. This study used breed average values to investigate the KgC/LSU for the 30 beef and dual purpose breeds in South Africa. The breeds were categorized in the following breed types: Sanga (indigenous to South Africa) Sanga derived, Zebu, Zebu derived, British and European. No relationship was found between cow weights and KgC/LSU, indicating that it is independent of cow weight between breeds. However, when the data is summarized into breed types, the Sanga and European breed types produce the least KgC/ LSU and Sanga derived breed types the most. This high value of the Sanga derived breeds is probably due to retained heterosis. Composite breeds are mostly intermediate to parental breeds for individual traits but superior for composite traits and KgC/LSU is a composite trait. These calculations were only done on breed averages. A genetic analysis on a breed level to estimate genetic parameters for this trait, and its genetic correlations with other traits now needs to be done before a decision can be taken whether selection for KgC/LSU will be feasible. The ultimate aim with a trait like this is to reduce the carbon footprint of weaner calf production since more kilogram calf will be produced per LSU (constant feed unit).展开更多
The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achieve...The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achievements in our research work are presented. The description includes: dynamic analysis of mooring system, research on performance of turret assembly, influence of vessel dimensions and hull forms on mooring performance, model tests under combined action of environmental forces in basin, and hull structural strength analysis.展开更多
It is expected that by 2025 China will add a total ethylene production capacity of 12 Mt/a,and in the next decade the total ethylene capacity will reach 35―40 Mt/a.The grassroots 11 new steam cracking units slated fo...It is expected that by 2025 China will add a total ethylene production capacity of 12 Mt/a,and in the next decade the total ethylene capacity will reach 35―40 Mt/a.The grassroots 11 new steam cracking units slated for production by the end of 2022 are listed in the following Table.展开更多
The article describes funding models in Germany,France,UK and in Poland.The second part of the article concentrates on entrepreneurial implications and the context.At the end of the article of financing path is descri...The article describes funding models in Germany,France,UK and in Poland.The second part of the article concentrates on entrepreneurial implications and the context.At the end of the article of financing path is described including public funding opportunities in Europe from a game developers’perspective.展开更多
Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China.It is generally believed that advanced technology should be counted on for energy conse...Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China.It is generally believed that advanced technology should be counted on for energy conservation.However,a review of the decline in the national average net coal consumption rate(NCCR)of China's coal-fired power industry along with its development over the past few decades indicates that the upgradation of the national unit capacity structure(including installing advanced production and phasing out backward production)plays a more important role.A quantitative study on the effect of the unit capacity structure upgradation on the decline in the national average NCCR suggests that phasing out backward production is the leading factor for the decline in the NCCR in the past decade,followed by the new installation,whose sum contributes to approximately 80%of the decline in the national average NCCR.The new installation has an effective affecting period of about 8 years,during which it would gradually decline from a relatively high value.Since the effect of phasing out backward production may remain at a certain degree given a continual action of phasing out backward capacity,it is suggested that the organized action of phasing out backward production should be insisted on.展开更多
Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there ...Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there exists a completely regular Hausdorff space X such that Π i∈I E i is Riesz algebra isomorphic to C(X) if and only if for every i∈I there exists a completely regular Hausdorff space X i such that E i is Riesz algebra isomorphic to C(X i) .展开更多
There have been nearly 33 oil and gas fields with billions bbl resources found in deepwater areas all over the world since 1970,so deepwater areas are of prime importance for petroleum exploration and development.With...There have been nearly 33 oil and gas fields with billions bbl resources found in deepwater areas all over the world since 1970,so deepwater areas are of prime importance for petroleum exploration and development.With the achievements of a series of deepwater petroleum exploration technology projects in the USA,Europe and Brazil,the GOM,Brazil and West Africa are becoming the focus of deepwater oil and gas exploration.The oil productivity derived from deepwater areas exceeds that of shallow water areas in GOM and Brazil since 2001.Deepwater is becoming very important for petroleum industries and the top area of technology innovations.On the basis of analyses of world deepwater technological innovations,this paper briefly introduces the history of the China National Offshore Oil Corporation (CNOOC),and then presents the status and challenges of Chinese deepwater oil and gas development.展开更多
Product customization has been recognized as an effective means to implement mass cus-tomization (MC). A new theory and method for MC-oriented evolutionary design of configuration product is presented based on the s...Product customization has been recognized as an effective means to implement mass cus-tomization (MC). A new theory and method for MC-oriented evolutionary design of configuration product is presented based on the study of developing law of evolutionary design in integrated envi-ronment, which focuses on the innovation and reuse properties of configuration product. The key technologies for general requirement modeling in quick response to customer requirement, multi-level stepwise configuration optimization driven by customer requirement and evolutionary deduction of product variable structure based on configuration association are thoroughly investigated. The suc-cessful application of the presented method in the development of real-life products demonstrates its utility, flexibility and robusticity.展开更多
The paradigms of chemical engineering discipline are discussed. The first paradigm of Unit Operations and the second paradigm of Transport Phenomena are well recognized among the chemical engineers all over the world,...The paradigms of chemical engineering discipline are discussed. The first paradigm of Unit Operations and the second paradigm of Transport Phenomena are well recognized among the chemical engineers all over the world, and what the next paradigm is remains still an open question. Several proposals such as Chemical product engineering, Sustainable chemical engineering and Multi-scale methodology are considered as candidates for next paradigm. Might Computational Chemical Engineering be the next one, which is advancing the discipline of chemical engineering toward ultimate mechanism-based understanding of chemical processes? This possibility is comparatively expounded with other proposals, and the scope and depth of computational chemical engineering are shortly listed.展开更多
Based on the productivity equation of coalbed methane (CBM) well, considering the impact of coal reservoir reformability on gas well productivity, the main production layer optimization index in the “three-step metho...Based on the productivity equation of coalbed methane (CBM) well, considering the impact of coal reservoir reformability on gas well productivity, the main production layer optimization index in the “three-step method” of optimal combination of production layers is corrected, and then the CBM production layer potential index is introduced to evaluate favorable areas for commingled multi-coal seam production. Through analysis of the key parameters of coal reservoirs affecting the CBM productivity index, a development unit division method for areas with multi-coal seams is established, and a quantitative grading index system is proposed. On this basis, the evaluation process of CBM development favorable area is developed: the mature 3-D modeling technology is used to characterize the reservoir physical properties of multi-coal seams in full-scale;the production layer potential index of each grid is calculated, and the production layer potential index contour under single-layer or commingled multi-layer production are plotted;according to the distribution of the contour of production layer potential index, the quantitative index of CBM development unit is adopted to outline the grade I, II, III coal reservoir distribution areas, and thus to pick out the favorable development areas. The practical application in the Yuwang block of Laochang in Yunnan proved that the favorable area evaluation process proposed can effectively overcome the defects of selecting favorable development areas only relying on evaluation results of a major coal seam pay, and enhance the accuracy of the evaluation results, meeting the requirements of selecting favorable areas for multi-coal seam commingled CBM production.展开更多
基金supported by the International Foundation for Science(IFS)under Grant E/4955-1.
文摘The aims of this study were to investigate the food safety knowledge and practices of food handlers and to assess the sanitary conditions of attieke production units in the South of C?te d’Ivoire. A cross-sectional study was conducted during 4 months in 2012 in 7 localities and data were collected using questionnaire and observation checklist and microbiological analysis of hands. A total of 775 attieke production units were involved in this survey. Seventy-one percent (71%) were located on public domains and only 70 production units (9%) used septic tank as a mean of final deposal for liquid waste. Hygiene conditions and practices of food handlers in attieke production units were inadequate. The presence of specific microorganisms such as Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter agglomerans, Citrobacter youngae, Klebsiella oxytoca and Citrobacter freundi was indicative of a degree of ignorance on the part of food handlers towards proper hygienic practices.
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
文摘In view of the existing situation of gas field development, one kind of method to evaluate the production performance of gas production units (GPUs) was presented in this paper. Among the commonly used indicators of gas field development, we select 11 indicators from the three aspects of production task, gas reservoir management, and production technology. According to the principle of analytic network process (ANP), this paper introduced one kind of new method to get the weights of indicators. By means of the method of TOPSIS, it is easy to obtain the rankings for all the GPUs through calculating the weighted Euclidean distance between each GPU and the positive or negative ideal point. This evaluation method could constantly improve the management level of gas production units and deepen the delicacy management of gas field development.
基金This study was supported by National 9th-Five-Year Plan Project (No. 96-011-02-07-02).
文摘Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, ship building, furniture, and decoration to partly take the place of wood, steel, plastic etc in China. This paper briefly described the basic component units, including strip, sliver, and particle, of bamboo-based panel and pointed out that to design the structure of bamboo-based panels should follow the principle of symmetric structure, surface forming method, and structuring principle of equalizing stress. According to the processing methods and formation of component units, the authors classified the bamboo-based panels in China into 13 types and presented the manufacturing technique and uses of the bamboo products, such as plybamboo, bamboo flooring, and bamboo-wood composite products in detail. In the last part of the paper, much information were offered on the output, market, and selling prospect of each type of bamboo-based panels.
基金Under the auspices of National Natural Science Foundation of China (No. 40971062)China Postdoctoral ScienceFundation (No. 20100480441)
文摘Based on the data from the Cost-benefit Data of Farm Produce and the China Agricultural Yearbook, this paper aims to examine the spatial and temporal change characteristics of total grain production and its affecting factors. The results show that: 1) During 1980 to 2007, total grain production increased from 3.20 ~ 108 t to 5.02 x 108 t in China, with annual increasing rate of 1.68%. From the regional disparities, most of the regions present increasing trend of total grain production except for several regions with higher level of economic development; 2) Grain sown area decreased from 1.17 × 108 ha in 1980 to 1.06 x 108 ha in 2007, which has negative effect on total grain production; 3) The increase of grain yield per unit area caused by land use intensity changes contributed to the increase of total grain yield greatly. However, as the land use intensity showed that farmers pay more attention to labor-saving input but not yield-increasing input, the less enthusiasm of farmers in grain production may become an important constraint on fu- ture grain production increase in China; 4) Based on the results, this paper proposed different land management poli- cies in different regions, for example, the government should protect cultivated land, promote large scale production. As to the less developed regions, the government should pay more attention to agricultural subsidies to promote farm- ers' enthusiasm in grain production.
文摘Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.
文摘The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.
文摘After many years of exploitation,onshore oil and gas resources are about to enter a recession period.Oil and gas will mainly come from oceans in the future.Generally speaking,the exploration and production(E&P)cost of oil from offshore is much higher than that of oil from onshore,so it is more sensitive to oil price.However,in recent years,oil price has been hovering at a low level for a long time,almost close to or even lower than the E&P cost of oil,which directly affects the development of oilfields.Besides the influence of oil price,some oilfields present the characteristics of marginal reserve scale,short peak production period and output rapidly declining.There leads to short economic life period and makes the economic benefit close to or lower than oilfield’s hurdle rate,which increases the difficulty of offshore oilfield development.As an important part of oilfield development,Floating Production Storage and Offloading unit,its investment mode and rent mode directly affect overall oilfield’s rate of return and the economic life.This paper chooses lease mode as the research object based on the analysis of investment mode,and further puts forward rent mode related with oil price through the analysis of traditional rent mode,and illustrates the advantages and disadvantages of various rent modes and their applicability so that the lessor chooses the right mode to achieve Win-Win with Oil Company and promotes the development of oilfields under low oil price.
文摘Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.
文摘Most measurements for beef improvement in South Africa are per individual (weaning weight, calving interval, growth rate, etc.). A measurement that expresses performance per constant unit, e.g. kilogram calf weaned per Large Stock Unit (LSU) can eventually be translated to kilogram calf produced per kg CO2 equivalent. A LSU is defined as a bovine requiring 75 MJ Metabolisable Energy (ME) per day. If more kilogram weaner calf can be produced per LSU (KgC/LSU), the carbon footprint of beef can be reduced. This study used breed average values to investigate the KgC/LSU for the 30 beef and dual purpose breeds in South Africa. The breeds were categorized in the following breed types: Sanga (indigenous to South Africa) Sanga derived, Zebu, Zebu derived, British and European. No relationship was found between cow weights and KgC/LSU, indicating that it is independent of cow weight between breeds. However, when the data is summarized into breed types, the Sanga and European breed types produce the least KgC/ LSU and Sanga derived breed types the most. This high value of the Sanga derived breeds is probably due to retained heterosis. Composite breeds are mostly intermediate to parental breeds for individual traits but superior for composite traits and KgC/LSU is a composite trait. These calculations were only done on breed averages. A genetic analysis on a breed level to estimate genetic parameters for this trait, and its genetic correlations with other traits now needs to be done before a decision can be taken whether selection for KgC/LSU will be feasible. The ultimate aim with a trait like this is to reduce the carbon footprint of weaner calf production since more kilogram calf will be produced per LSU (constant feed unit).
基金Project supported by special scientific research foundation for doctoral subjects
文摘The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achievements in our research work are presented. The description includes: dynamic analysis of mooring system, research on performance of turret assembly, influence of vessel dimensions and hull forms on mooring performance, model tests under combined action of environmental forces in basin, and hull structural strength analysis.
文摘It is expected that by 2025 China will add a total ethylene production capacity of 12 Mt/a,and in the next decade the total ethylene capacity will reach 35―40 Mt/a.The grassroots 11 new steam cracking units slated for production by the end of 2022 are listed in the following Table.
文摘The article describes funding models in Germany,France,UK and in Poland.The second part of the article concentrates on entrepreneurial implications and the context.At the end of the article of financing path is described including public funding opportunities in Europe from a game developers’perspective.
基金China Postdoctoral Science Foundation (No.2017M620758)Special Funds of the National Natural Science Foundation of China(Grant No.L1522032)the Consulting Project of Chinese Academy of Engineering(No.2015-ZCQ-06).
文摘Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China.It is generally believed that advanced technology should be counted on for energy conservation.However,a review of the decline in the national average net coal consumption rate(NCCR)of China's coal-fired power industry along with its development over the past few decades indicates that the upgradation of the national unit capacity structure(including installing advanced production and phasing out backward production)plays a more important role.A quantitative study on the effect of the unit capacity structure upgradation on the decline in the national average NCCR suggests that phasing out backward production is the leading factor for the decline in the NCCR in the past decade,followed by the new installation,whose sum contributes to approximately 80%of the decline in the national average NCCR.The new installation has an effective affecting period of about 8 years,during which it would gradually decline from a relatively high value.Since the effect of phasing out backward production may remain at a certain degree given a continual action of phasing out backward capacity,it is suggested that the organized action of phasing out backward production should be insisted on.
文摘Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there exists a completely regular Hausdorff space X such that Π i∈I E i is Riesz algebra isomorphic to C(X) if and only if for every i∈I there exists a completely regular Hausdorff space X i such that E i is Riesz algebra isomorphic to C(X i) .
文摘There have been nearly 33 oil and gas fields with billions bbl resources found in deepwater areas all over the world since 1970,so deepwater areas are of prime importance for petroleum exploration and development.With the achievements of a series of deepwater petroleum exploration technology projects in the USA,Europe and Brazil,the GOM,Brazil and West Africa are becoming the focus of deepwater oil and gas exploration.The oil productivity derived from deepwater areas exceeds that of shallow water areas in GOM and Brazil since 2001.Deepwater is becoming very important for petroleum industries and the top area of technology innovations.On the basis of analyses of world deepwater technological innovations,this paper briefly introduces the history of the China National Offshore Oil Corporation (CNOOC),and then presents the status and challenges of Chinese deepwater oil and gas development.
基金This project is supported by National Natural Science Foundation of China (No. 50505044, No. 60573175)Postdoctoral Foundation of China (No. 2005037816).
文摘Product customization has been recognized as an effective means to implement mass cus-tomization (MC). A new theory and method for MC-oriented evolutionary design of configuration product is presented based on the study of developing law of evolutionary design in integrated envi-ronment, which focuses on the innovation and reuse properties of configuration product. The key technologies for general requirement modeling in quick response to customer requirement, multi-level stepwise configuration optimization driven by customer requirement and evolutionary deduction of product variable structure based on configuration association are thoroughly investigated. The suc-cessful application of the presented method in the development of real-life products demonstrates its utility, flexibility and robusticity.
基金Supported by the National Basic Research Program of China(2012CB224806)the National Natural Science Foundation of China(21376243,91434126)the Major National Scientific Instrument Development Project(21427814)
文摘The paradigms of chemical engineering discipline are discussed. The first paradigm of Unit Operations and the second paradigm of Transport Phenomena are well recognized among the chemical engineers all over the world, and what the next paradigm is remains still an open question. Several proposals such as Chemical product engineering, Sustainable chemical engineering and Multi-scale methodology are considered as candidates for next paradigm. Might Computational Chemical Engineering be the next one, which is advancing the discipline of chemical engineering toward ultimate mechanism-based understanding of chemical processes? This possibility is comparatively expounded with other proposals, and the scope and depth of computational chemical engineering are shortly listed.
基金Supported by the National Natural Science Foundation of China(No.41772155)the National Science and Technology Major Project of China(No.2016ZX05044-002)the Fundamental Research Funds for the Central Universities of China(No.2015XKZD07)
文摘Based on the productivity equation of coalbed methane (CBM) well, considering the impact of coal reservoir reformability on gas well productivity, the main production layer optimization index in the “three-step method” of optimal combination of production layers is corrected, and then the CBM production layer potential index is introduced to evaluate favorable areas for commingled multi-coal seam production. Through analysis of the key parameters of coal reservoirs affecting the CBM productivity index, a development unit division method for areas with multi-coal seams is established, and a quantitative grading index system is proposed. On this basis, the evaluation process of CBM development favorable area is developed: the mature 3-D modeling technology is used to characterize the reservoir physical properties of multi-coal seams in full-scale;the production layer potential index of each grid is calculated, and the production layer potential index contour under single-layer or commingled multi-layer production are plotted;according to the distribution of the contour of production layer potential index, the quantitative index of CBM development unit is adopted to outline the grade I, II, III coal reservoir distribution areas, and thus to pick out the favorable development areas. The practical application in the Yuwang block of Laochang in Yunnan proved that the favorable area evaluation process proposed can effectively overcome the defects of selecting favorable development areas only relying on evaluation results of a major coal seam pay, and enhance the accuracy of the evaluation results, meeting the requirements of selecting favorable areas for multi-coal seam commingled CBM production.