Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract...The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.展开更多
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu...BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
Even today,academics continue to debate the effect of feminization of agricultural labor force on agricultural output.By considering the dimensions of participation in decision-making and production,this study divides...Even today,academics continue to debate the effect of feminization of agricultural labor force on agricultural output.By considering the dimensions of participation in decision-making and production,this study divides the various agricultural production models into three types:(i)the traditional model of decisions made either jointly by men and women or by men alone while both genders participate in production,(ii)complete feminization of agricultural decision-making and the production labor force,and(iii)feminization of the agricultural production labor force only.This study investigates the effects of combining or separating decision-making and production in regard to agricultural development in the context of feminization of the agricultural labor force.Using follow-up data collected from 2004–2008 by the Ministry of Agriculture of China,we built a comprehensive panel data model to test our hypotheses.Our research shows that in comparison to traditional agricultural households and fully feminized agricultural labor forces,partially feminized production resulted in lower grain yield and technological advancement.The feminization of agricultural labor does not necessarily have a negative impact on agricultural output,especially since heavy manual labor is being increasingly replaced by agricultural machinery and outsourcing of tasks.The degree of feminization of the decision-making and production processes should be an important consideration when evaluating the purported negative effects of the feminization of agricultural labor.展开更多
Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO2 by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes an...Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO2 by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.展开更多
The aim of this paper is to present and analyze the factors, motivations and criteria considered in the decision-making processes of the actors belonging to the biodiesel production chain in Brazil. The biodiesel prod...The aim of this paper is to present and analyze the factors, motivations and criteria considered in the decision-making processes of the actors belonging to the biodiesel production chain in Brazil. The biodiesel production chain consists of three main agents: the farmers, the soybean processing plants and the oil refinery/distributor. For the farmers organized in cooperatives the central decision is whether to sell oil-bearing crops for the production of biodiesel. In contrast, for the soybean processing plants that convert the crops into vegetable and/or biodiesel, the decision to produce this fuel is based on the wish to expand their market portfolio. Government tax incentives strongly influence both decisions regarding which oil-bearing crop to use and the amount of vegetable oil to be transformed into biodiesel. Finally, the oil refinery/distributor is obliged by law to mix the biodiesel with the mineral diesel and perceives this as a liability. The results show the existence of different characteristics linked to the decision-making process and a significant lack of synchronicity in the aims and motivations behind the agents' decisions. This state of decisional misalignment leads to heightened uncertainty regarding the sustainability of the Brazilian biodiesel production program.展开更多
This paper aims to discuss how the shaping of a city, Juiz de Fora, in Brazil, has resulted from the power of location of some social agents and from their disputes on the production of space. First, it introduces the...This paper aims to discuss how the shaping of a city, Juiz de Fora, in Brazil, has resulted from the power of location of some social agents and from their disputes on the production of space. First, it introduces the concept of social production of space, emphasizing the role of social agents in urban processes. Then, it presents specific aspects of the history of Juiz de Fora" its origins and how social agents and forces have played a significant role in shaping the built environment of the city--specially represented by main streets of the city. The paper studies how the social agents, with their different visions and goals, have influenced the process of formation and development of the city. This demonstrates the complexity of the existing relationships between the built environment and the social context that is specific to the city. Different urban forces fight for city spaces, construct and modify its territory so that their needs are fulfilled. Their strength, their experiences and efforts, and their ideas of a city are inscribed in urban landscapes; in similar ways, these are revealed by the city paths we follow here.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d...Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor...Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.展开更多
Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capa...Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.展开更多
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s...Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.展开更多
Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show...Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes.展开更多
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
基金financially supported by the National Natural Science Foundation of China(Nos.52404328,52274412,and 52374418)the China Postdoctoral Science Foundation(No.2024M753248)。
文摘The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.
文摘BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金supported by the the National Natural Science Foundation of China (71573133, 71673047 and 71473122)the Center for Food Security Research of Nanjing Agricultural Universitythe Center for Cooperative Innovation of Modern Grain Circulation and Security of Jiangsu Province, China
文摘Even today,academics continue to debate the effect of feminization of agricultural labor force on agricultural output.By considering the dimensions of participation in decision-making and production,this study divides the various agricultural production models into three types:(i)the traditional model of decisions made either jointly by men and women or by men alone while both genders participate in production,(ii)complete feminization of agricultural decision-making and the production labor force,and(iii)feminization of the agricultural production labor force only.This study investigates the effects of combining or separating decision-making and production in regard to agricultural development in the context of feminization of the agricultural labor force.Using follow-up data collected from 2004–2008 by the Ministry of Agriculture of China,we built a comprehensive panel data model to test our hypotheses.Our research shows that in comparison to traditional agricultural households and fully feminized agricultural labor forces,partially feminized production resulted in lower grain yield and technological advancement.The feminization of agricultural labor does not necessarily have a negative impact on agricultural output,especially since heavy manual labor is being increasingly replaced by agricultural machinery and outsourcing of tasks.The degree of feminization of the decision-making and production processes should be an important consideration when evaluating the purported negative effects of the feminization of agricultural labor.
基金Under the auspices of the National Key Research and Development Program of China(No.2019YFA0606603)。
文摘Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO2 by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.
文摘The aim of this paper is to present and analyze the factors, motivations and criteria considered in the decision-making processes of the actors belonging to the biodiesel production chain in Brazil. The biodiesel production chain consists of three main agents: the farmers, the soybean processing plants and the oil refinery/distributor. For the farmers organized in cooperatives the central decision is whether to sell oil-bearing crops for the production of biodiesel. In contrast, for the soybean processing plants that convert the crops into vegetable and/or biodiesel, the decision to produce this fuel is based on the wish to expand their market portfolio. Government tax incentives strongly influence both decisions regarding which oil-bearing crop to use and the amount of vegetable oil to be transformed into biodiesel. Finally, the oil refinery/distributor is obliged by law to mix the biodiesel with the mineral diesel and perceives this as a liability. The results show the existence of different characteristics linked to the decision-making process and a significant lack of synchronicity in the aims and motivations behind the agents' decisions. This state of decisional misalignment leads to heightened uncertainty regarding the sustainability of the Brazilian biodiesel production program.
文摘This paper aims to discuss how the shaping of a city, Juiz de Fora, in Brazil, has resulted from the power of location of some social agents and from their disputes on the production of space. First, it introduces the concept of social production of space, emphasizing the role of social agents in urban processes. Then, it presents specific aspects of the history of Juiz de Fora" its origins and how social agents and forces have played a significant role in shaping the built environment of the city--specially represented by main streets of the city. The paper studies how the social agents, with their different visions and goals, have influenced the process of formation and development of the city. This demonstrates the complexity of the existing relationships between the built environment and the social context that is specific to the city. Different urban forces fight for city spaces, construct and modify its territory so that their needs are fulfilled. Their strength, their experiences and efforts, and their ideas of a city are inscribed in urban landscapes; in similar ways, these are revealed by the city paths we follow here.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890914)。
文摘Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金supported by the National Natural Science Foundation of China (3207269732030102)+2 种基金CARS-PIG-35R&D Programmes of Guangdong Province (2018B020203003)Laboratory of Lingnan Modern Agriculture Project (NZ2021006)。
文摘Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.
基金supported by the National Natural Science Foundation of China(41871184)the National Social Science Fund of China(21ZDA056)the Scientific and Technological Innovation Project of the Chinese Academy of Agricultural Sciences(10-IAED-ZT-01-2023and 10-IAED-RC-07-2023)。
文摘Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.
基金the support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
基金supported by the Natural Science Foundation of China(Grant Nos.22179093,21905202,and 51972312)the Natural Science Foundation of Liaoning Province,China(Grant No.2020-MS-003)+1 种基金the Australian Research Council through the Discovery Project(No.DP210102215)the Electron Microscopy Center in the University of Wollongong.The theoretical calculations performed in this work were carried out on TianHe-1(A)at the National Supercomputer Center in Tianjin.
文摘Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes.
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.