In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter m...In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter model based on the mesoscopic damage mechanics.The product of strength and elastic modulus of mesoscale representative volume element was considered to be one of the mechanical property parameters of materials and assumed to conform to specified probability distributions to reflect the heterogeneity of mechanical property in materials.With the improved property parameter selection method,a numerical program was developed and the simulation of the failure process of the rock and concrete specimens under static tensile loading condition was carried out.The failure process and complete stress-strain curves of a class of rock and concrete in stable fracture propagation manner under uniaxial tension were obtained.The simulated macroscopic mechanical behavior was compared with the available laboratory experimental observation,and a reasonable agreement was obtained.Verification shows that the improved parameter selection method is suitable for mesoscopic numerical simulation in the failure process of rock and concrete.展开更多
基金Project(50679006) supported by the National Natural Science Foundation of ChinaProject(NCET-06-0270) supported by the Program for New Century Excellent Talents in University
文摘In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter model based on the mesoscopic damage mechanics.The product of strength and elastic modulus of mesoscale representative volume element was considered to be one of the mechanical property parameters of materials and assumed to conform to specified probability distributions to reflect the heterogeneity of mechanical property in materials.With the improved property parameter selection method,a numerical program was developed and the simulation of the failure process of the rock and concrete specimens under static tensile loading condition was carried out.The failure process and complete stress-strain curves of a class of rock and concrete in stable fracture propagation manner under uniaxial tension were obtained.The simulated macroscopic mechanical behavior was compared with the available laboratory experimental observation,and a reasonable agreement was obtained.Verification shows that the improved parameter selection method is suitable for mesoscopic numerical simulation in the failure process of rock and concrete.