期刊文献+
共找到12,149篇文章
< 1 2 250 >
每页显示 20 50 100
Machine learning applications in healthcare clinical practice and research
1
作者 Nikolaos-Achilleas Arkoudis Stavros P Papadakos 《World Journal of Clinical Cases》 SCIE 2025年第1期16-21,共6页
Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligen... Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research. 展开更多
关键词 Machine learning Artificial INTELLIGENCE CLINICAL Practice research Glomerular filtration rate Non-alcoholic fatty liver disease MEDICINE
下载PDF
Navigating challenges and opportunities of machine learning in hydrogen catalysis and production processes: Beyond algorithm development
2
作者 Mohd Nur Ikhmal Salehmin Sieh Kiong Tiong +5 位作者 Hassan Mohamed Dallatu Abbas Umar Kai Ling Yu Hwai Chyuan Ong Saifuddin Nomanbhay Swee Su Lim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期223-252,共30页
With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a c... With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a compelling avenue. This review uniquely focuses on harnessing the synergy between ML and computational modeling(CM) or optimization tools, as well as integrating multiple ML techniques with CM, for the synthesis of diverse hydrogen evolution reaction(HER) catalysts and various hydrogen production processes(HPPs). Furthermore, this review addresses a notable gap in the literature by offering insights, analyzing challenges, and identifying research prospects and opportunities for sustainable hydrogen production. While the literature reflects a promising landscape for ML applications in hydrogen energy domains, transitioning AI-based algorithms from controlled environments to real-world applications poses significant challenges. Hence, this comprehensive review delves into the technical,practical, and ethical considerations associated with the application of ML in HER catalyst development and HPP optimization. Overall, this review provides guidance for unlocking the transformative potential of ML in enhancing prediction efficiency and sustainability in the hydrogen production sector. 展开更多
关键词 Machine learning Computational modeling HER catalyst synthesis Hydrogen energy Hydrogen production processes Algorithm development
下载PDF
Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model
3
作者 Qin Qian Mingjing Lu +3 位作者 Anhai Zhong Feng Yang Wenjun He Min Li 《Energy Engineering》 EI 2024年第8期2167-2190,共24页
The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinea... The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets. 展开更多
关键词 Shale oil production capacity data-driven model model-driven method machine learning
下载PDF
Better use of experience from other reservoirs for accurate production forecasting by learn-to-learn method
4
作者 Hao-Chen Wang Kai Zhang +7 位作者 Nancy Chen Wen-Sheng Zhou Chen Liu Ji-Fu Wang Li-Ming Zhang Zhi-Gang Yu Shi-Ti Cui Mei-Chun Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期716-728,共13页
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie... To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods. 展开更多
关键词 production forecasting Multiple patterns Few-shot learning Transfer learning
下载PDF
A Fusion Model for Personalized Adaptive Multi-Product Recommendation System Using Transfer Learning and Bi-GRU
5
作者 Buchi Reddy Ramakantha Reddy Ramasamy Lokesh Kumar 《Computers, Materials & Continua》 SCIE EI 2024年第12期4081-4107,共27页
Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products,leading to suboptimal user experiences.To address this,our study presents a Personalized Adaptive... Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products,leading to suboptimal user experiences.To address this,our study presents a Personalized Adaptive Multi-Product Recommendation System(PAMR)leveraging transfer learning and Bi-GRU(Bidirectional Gated Recurrent Units).Using a large dataset of user reviews from Amazon and Flipkart,we employ transfer learning with pre-trained models(AlexNet,GoogleNet,ResNet-50)to extract high-level attributes from product data,ensuring effective feature representation even with limited data.Bi-GRU captures both spatial and sequential dependencies in user-item interactions.The innovation of this study lies in the innovative feature fusion technique that combines the strengths of multiple transfer learning models,and the integration of an attention mechanism within the Bi-GRU framework to prioritize relevant features.Our approach addresses the classic recommendation systems that often face challenges such as cold start along with data sparsity difficulties,by utilizing robust user and item representations.The model demonstrated an accuracy of up to 96.9%,with precision and an F1-score of 96.2%and 96.97%,respectively,on the Amazon dataset,significantly outperforming the baselines and marking a considerable advancement over traditional configurations.This study highlights the effectiveness of combining transfer learning with Bi-GRU for scalable and adaptive recommendation systems,providing a versatile solution for real-world applications. 展开更多
关键词 Personalized recommendation systems transfer learning bidirectional gated recurrent units(Bi-GRU) performance metrics adaptive systems product reviews
下载PDF
A systematic machine learning method for reservoir identification and production prediction 被引量:3
6
作者 Wei Liu Zhangxin Chen +1 位作者 Yuan Hu Liuyang Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期295-308,共14页
Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been appl... Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been applied to reservoir identification and production prediction based on reservoir identification.Production forecasting studies are typically based on overall reservoir thickness and lack accuracy when reservoirs contain a water or dry layer without oil production.In this paper,a systematic ML method was developed using classification models for reservoir identification,and regression models for production prediction.The production models are based on the reservoir identification results.To realize the reservoir identification,seven optimized ML methods were used:four typical single ML methods and three ensemble ML methods.These methods classify the reservoir into five types of layers:water,dry and three levels of oil(I oil layer,II oil layer,III oil layer).The validation and test results of these seven optimized ML methods suggest the three ensemble methods perform better than the four single ML methods in reservoir identification.The XGBoost produced the model with the highest accuracy;up to 99%.The effective thickness of I and II oil layers determined during the reservoir identification was fed into the models for predicting production.Effective thickness considers the distribution of the water and the oil resulting in a more reasonable production prediction compared to predictions based on the overall reservoir thickness.To validate the superiority of the ML methods,reference models using overall reservoir thickness were built for comparison.The models based on effective thickness outperformed the reference models in every evaluation metric.The prediction accuracy of the ML models using effective thickness were 10%higher than that of reference model.Without the personal error or data distortion existing in traditional methods,this novel system realizes rapid analysis of data while reducing the time required to resolve reservoir classification and production prediction challenges.The ML models using the effective thickness obtained from reservoir identification were more accurate when predicting oil production compared to previous studies which use overall reservoir thickness. 展开更多
关键词 Reservoir identification production prediction Machine learning Ensemble method
下载PDF
Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches 被引量:2
7
作者 Jin Meng Yu-Jie Zhou +4 位作者 Tian-Rui Ye Yi-Tian Xiao Ya-Qiu Lu Ai-Wei Zheng Bang Liang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期277-294,共18页
A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis ca... A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy. 展开更多
关键词 Shale gas production performance DATA-DRIVEN Dominant factors Game theory Machine learning Derivative-free optimization
下载PDF
Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty 被引量:2
8
作者 Zhong-Zheng Wang Kai Zhang +6 位作者 Guo-Dong Chen Jin-Ding Zhang Wen-Dong Wang Hao-Chen Wang Li-Ming Zhang Xia Yan Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期261-276,共16页
Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality r... Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality results,they cannot be applied to real-time optimization for large-scale reservoirs due to high computational demands.In addition,most methods generally assume that the reservoir model is deterministic and ignore the uncertainty of the subsurface environment,making the obtained scheme unreliable for practical deployment.In this work,an efficient and robust method,namely evolutionaryassisted reinforcement learning(EARL),is proposed to achieve real-time production optimization under uncertainty.Specifically,the production optimization problem is modeled as a Markov decision process in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy that maximizes the specified goals.To deal with the problems of brittle convergence properties and lack of efficient exploration strategies of reinforcement learning approaches,a population-based evolutionary algorithm is introduced to assist the training of agents,which provides diverse exploration experiences and promotes stability and robustness due to its inherent redundancy.Compared with prior methods that only optimize a solution for a particular scenario,the proposed approach trains a policy that can adapt to uncertain environments and make real-time decisions to cope with unknown changes.The trained policy,represented by a deep convolutional neural network,can adaptively adjust the well controls based on different reservoir states.Simulation results on two reservoir models show that the proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but also has strong robustness and real-time decision capacity. 展开更多
关键词 production optimization Deep reinforcement learning Evolutionary algorithm Real-time optimization Optimization under uncertainty
下载PDF
Optimal production lot sizing model in a supply chain with periodically fixed demand considering learning effect 被引量:1
9
作者 熊中楷 SHEN Tiesong 《Journal of Chongqing University》 CAS 2002年第2期86-88,共3页
This paper presents an optimal production model for manufacturer in a supply chain with a fixed demand at a fixed interval with respect to the learning effect on production capacity. An algorithm is employed to find t... This paper presents an optimal production model for manufacturer in a supply chain with a fixed demand at a fixed interval with respect to the learning effect on production capacity. An algorithm is employed to find the optimal delay time for production and production time sequentially. It is found that the optimal delay time for production and the production time are not static, but dynamic and variant with time. It is important for a manufacturer to schedule the production so as to prevent facilities and workers from idling. 展开更多
关键词 learning curve capacity expansion supply chain optimal production policy.
下载PDF
Deep-Learning-Based Production Decline Curve Analysis in the Gas Reservoir through Sequence Learning Models
10
作者 Shaohua Gu Jiabao Wang +3 位作者 Liang Xue Bin Tu Mingjin Yang Yuetian Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1579-1599,共21页
Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery,which has an important impact on gas field development planning and economic evaluation.Owing to the model’s... Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery,which has an important impact on gas field development planning and economic evaluation.Owing to the model’s simplicity,the decline curve analysis method has been widely used to predict production performance.The advancement of deep-learning methods provides an intelligent way of analyzing production performance in tight gas reservoirs.In this paper,a sequence learning method to improve the accuracy and efficiency of tight gas production forecasting is proposed.The sequence learning methods used in production performance analysis herein include the recurrent neural network(RNN),long short-term memory(LSTM)neural network,and gated recurrent unit(GRU)neural network,and their performance in the tight gas reservoir production prediction is investigated and compared.To further improve the performance of the sequence learning method,the hyperparameters in the sequence learning methods are optimized through a particle swarm optimization algorithm,which can greatly simplify the optimization process of the neural network model in an automated manner.Results show that the optimized GRU and RNN models have more compact neural network structures than the LSTM model and that the GRU is more efficiently trained.The predictive performance of LSTM and GRU is similar,and both are better than the RNN and the decline curve analysis model and thus can be used to predict tight gas production. 展开更多
关键词 Tight gas production forecasting deep learning sequence learning models
下载PDF
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
11
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 production optimization Random forest The Bayesian algorithm Ensemble learning Particle swarm optimization
下载PDF
Application of Deep Learning to Production Forecasting in Intelligent Agricultural Product Supply Chain
12
作者 Xiao Ya Ma Jin Tong +3 位作者 Fei Jiang Min Xu Li Mei Sun Qiu Yan Chen 《Computers, Materials & Continua》 SCIE EI 2023年第3期6145-6159,共15页
Production prediction is an important factor influencing the realization of an intelligent agricultural supply chain.In an Internet of Things(IoT)environment,accurate yield prediction is one of the prerequisites for a... Production prediction is an important factor influencing the realization of an intelligent agricultural supply chain.In an Internet of Things(IoT)environment,accurate yield prediction is one of the prerequisites for achieving an efficient response in an intelligent agricultural supply chain.As an example,this study applied a conventional prediction method and deep learning prediction model to predict the yield of a characteristic regional fruit(the Shatian pomelo)in a comparative study.The root means square error(RMSE)values of regression analysis,exponential smoothing,grey prediction,grey neural network,support vector regression(SVR),and long short-term memory(LSTM)neural network methods were 53.715,6.707,18.440,1.580,and 1.436,respectively.Among these,the mean square error(MSE)values of the grey neural network,SVR,and LSTM neural network methods were 2.4979,31.652,and 2.0618,respectively;and theirRvalues were 0.99905,0.94,and 0.94501,respectively.The results demonstrated that the RMSE of the deep learning model is generally lower than that of a traditional prediction model,and the prediction results are more accurate.The prediction performance of the grey neural network was shown to be superior to that of SVR,and LSTM neural network,based on the comparison of parameters. 展开更多
关键词 Internet of things intelligent agricultural supply chain deep learning production prediction
下载PDF
Production performance forecasting method based on multivariate time series and vector autoregressive machine learning model for waterflooding reservoirs
13
作者 ZHANG Rui JIA Hu 《Petroleum Exploration and Development》 CSCD 2021年第1期201-211,共11页
A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.... A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan. 展开更多
关键词 waterflooding reservoir production prediction machine learning multivariate time series vector autoregression uncertainty analysis
下载PDF
Research Progress on Mechanized Mixed Sowing Seed Production Technology of Hybrid Rice 被引量:4
14
作者 张德文 《Agricultural Science & Technology》 CAS 2017年第5期924-929,939,共7页
Hybrid rice planting has been widely popularized and applied in the world. However, the high cost of seed production and the complicated procedures have become a bottleneck in the development of hybrid rice. The resea... Hybrid rice planting has been widely popularized and applied in the world. However, the high cost of seed production and the complicated procedures have become a bottleneck in the development of hybrid rice. The research progress on mixed sowing seed production techniques of hybrid rice was introduced from the aspects of rice resources creation, breeding, sowing seed technology research and cost benefit analysis. The production technology of the new mixed seeding combina- tion "Xinhunyou 6" was investigated, including the research and validation of benta- zon treatment period and dosage, mixing ratio of male and female parents, and the comparative test of different different sowing methods, which revealed that the mechanization technology of seed production of hybrid rice was mature and feasible and would be one of the most important development trend of technological devel- opment of hybrid rice production. 展开更多
关键词 Hybrid rice Mechanized seed production Glume color marker gene BENTAZON research progress
下载PDF
Researches on Foreign Language Learning Anxiety
15
作者 吴均霞 《海外英语》 2013年第10X期135-136,共2页
Foreign language anxiety is one of the factors of affecting foreign language achievement. It is negatively associated with language skill learning. This article will show some researches on foreign language anxiety fr... Foreign language anxiety is one of the factors of affecting foreign language achievement. It is negatively associated with language skill learning. This article will show some researches on foreign language anxiety from certain aspects. 展开更多
关键词 research FOREIGN LANGUAGE learning ANXIETY
下载PDF
College English Teaching Study Conducted by Discovery Learning Theory and Action Research——Take College English Ⅱ for Instance
16
作者 李姝颖 《海外英语》 2017年第4期221-222,共2页
The unceasing revolution of the global economy and culture boosts the revolutionary step of the educational circle.Combining the creed of The Guide of College English Teaching in 2016 with the results of investigation... The unceasing revolution of the global economy and culture boosts the revolutionary step of the educational circle.Combining the creed of The Guide of College English Teaching in 2016 with the results of investigation and survey in colleges, a research group in the Institute of Foreign Languages of Hankou University comes up with a revolutionary trial scheme on College English teaching conducted by discovery learning theory, as well as a research method of action research, which is in hope of mending the problems and shortcomings of current College English teaching. 展开更多
关键词 college English discovery learning theory action research teaching revolution
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines 被引量:1
17
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
Research Progress and Prospects of Total Factor Productivity in the Construction Industry 被引量:1
18
作者 Chen WANG Shijie YU +2 位作者 Chenhao LIANG Lidan CAI Xiaohong XIONG 《Asian Agricultural Research》 2024年第7期39-41,共3页
The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the ... The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry. 展开更多
关键词 Construction industry Total factor productivity research progress Influence factor Theoretical basis
下载PDF
Using Learning Strategies:A Review in L2 Listening Research
19
作者 田秀峰 《海外英语》 2013年第1X期66-67,72,共3页
This paper briefly reviews some significant learning strategies in L2 listening research.By pointing out both the feasibil ities and difficulties in implementing those strategies in Chinese EFL classrooms,it attempts ... This paper briefly reviews some significant learning strategies in L2 listening research.By pointing out both the feasibil ities and difficulties in implementing those strategies in Chinese EFL classrooms,it attempts to raise English language practitio ners'awareness of reforming the listening instruction and of utilizing strategic teaching approaches so as to enhance students'lis tening proficiency. 展开更多
关键词 learning strategies BOTTOM up TOP DOWN product-bas
下载PDF
A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model
20
作者 Bin Liang Jiang Liu +4 位作者 Li-Xia Kang Ke Jiang Jun-Yu You Hoonyoung Jeong Zhan Meng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3326-3339,共14页
Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challe... Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challenges due to the complex law of decline, nonlinear and non-stationary features in production data, which greatly repair the robustness of current models in predicting shale gas production time series. To address these challenges and improve accuracy in production forecasting, this paper introduces a novel and innovative approach: a hybrid proxy model that combines the bidirectional long short-term memory(BiLSTM) neural network and random forest(RF) through deep learning. The BiLSTM neural network is adept at capturing long-term dependencies, making it suitable for understanding the intricate relationships between input and output variables in shale gas production.On the other hand, RF serves a dual purpose: reducing model variance and addressing the concept drift problem that arises in non-stationary time series predictions made by BiLSTM. By integrating these two models, the hybrid approach effectively captures the inherent dependencies present in long and nonstationary production time series, thereby reducing model uncertainty. Furthermore, the combination of BiLSTM and RF is optimized using the recently-proposed marine predators algorithm(MPA) to fine-tune hyperparameters and enhance the overall performance of the proxy model. The results demonstrate that the proposed BiLSTM-RF-MPA model achieves higher prediction accuracy and demonstrates stronger generalization capabilities by effectively handling the complex nonlinear and non-stationary characteristics of shale gas production time series. Compared to other models such as LSTM, BiLSTM, and RF, the proposed model exhibits superior fitting and prediction performance, with an average improvement in performance indicators exceeding 20%. This innovative framework provides valuable insights for forecasting the complex production performance of unconventional oil and gas reservoirs, which sheds light on the development of data-driven proxy models in the field of subsurface energy utilization. 展开更多
关键词 production forecasting Shale gas BiLSTM-RF-MPA model Nonstationary production time series Deep learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部