为探究成渝地区双城经济圈NPP时空变化及与气候的关系,基于MOD17A3产品NPP数据,采用一元线性回归模型模拟2001—2020年植被NPP演变趋势,分析植被NPP变化特征,结合ANUSPLIN插值的气象数据,采用相关性分析法定量分析气候变化对研究区植被...为探究成渝地区双城经济圈NPP时空变化及与气候的关系,基于MOD17A3产品NPP数据,采用一元线性回归模型模拟2001—2020年植被NPP演变趋势,分析植被NPP变化特征,结合ANUSPLIN插值的气象数据,采用相关性分析法定量分析气候变化对研究区植被NPP变化的影响。研究表明:(1)研究区内植被NPP整体呈现缓慢增长的趋势,增长率为7.53 g C·m^(-2)·a^(-1),同时植被NPP均值分布呈现四周高中间低的空间格局。(2)研究区内气候因子对植被NPP变化的影响存在空间异质性,在眉山市、乐山市、雅安市以及重庆市黔江区、彭水县部分地区气温与植被NPP负相关关系明显,其呈正相关关系的区域广泛分布在成渝城市群的中部和东部;降水与植被NPP呈正相关关系的区域面积占比达到92.46%。(3)研究区主要受非气候因子影响,面积占比高达86.87%,说明人类活动对植被NPP变化的影响愈来愈烈,研究人为影响应是成渝城市群生态修复的重点。展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
Forest net primary productivity(NPP)constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity,which is closely related to f...Forest net primary productivity(NPP)constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity,which is closely related to forest age.Despite its significance,the impact of forest age on NPP is often ignored in future NPP projections.Here,we mapped forest age in Hunan Province at a 30-m resolution utilizing a combination of Landsat time series stack(LTSS),national forest inventory(NFI)data,and the relationships between height and age.Subsequently,NPP was derived from NFI data and the relationships between NPP and age was built for various forest types.Then forest NPP was predicted based on the NPP-age relationships under three future scenarios,assessing the impact of forest age on NPP.Our findings reveal substantial variations in forest NPP in Hunan Province under three future scenarios:under the age-only scenario,NPP peaks in 2041(133.56TgC·yr^(−1)),while NPP peaks three years later in 2044(141.14TgC·yr^(−1))under the natural development scenario.The maximum afforestation scenario exhibits the most rapid increase in NPP,with peaking in 2049(197.95TgC·yr^(−1)).However,with the aging of the forest,NPP is projected to then decrease by 7.54%,6.07%,and 7.47%in 2060,and 20.05%,19.74%,and 28.38%in 2100,respectively,compared to their peaks under the three scenarios.This indicates that forest NPP will continue to decline soon.Controlling the age structure of forests through selective logging,afforestation and reforestation,and encouraging natural regeneration after disturbance could mitigate this declining trend in forest NPP,but implications of these measures on the full forest carbon balance remain to be studied.Insights from the future multi-scenarios are expected to provide data to support sustainable forest management and national policy development,which will inform the achievement of carbon neutrality goals by 2060.展开更多
文摘为探究成渝地区双城经济圈NPP时空变化及与气候的关系,基于MOD17A3产品NPP数据,采用一元线性回归模型模拟2001—2020年植被NPP演变趋势,分析植被NPP变化特征,结合ANUSPLIN插值的气象数据,采用相关性分析法定量分析气候变化对研究区植被NPP变化的影响。研究表明:(1)研究区内植被NPP整体呈现缓慢增长的趋势,增长率为7.53 g C·m^(-2)·a^(-1),同时植被NPP均值分布呈现四周高中间低的空间格局。(2)研究区内气候因子对植被NPP变化的影响存在空间异质性,在眉山市、乐山市、雅安市以及重庆市黔江区、彭水县部分地区气温与植被NPP负相关关系明显,其呈正相关关系的区域广泛分布在成渝城市群的中部和东部;降水与植被NPP呈正相关关系的区域面积占比达到92.46%。(3)研究区主要受非气候因子影响,面积占比高达86.87%,说明人类活动对植被NPP变化的影响愈来愈烈,研究人为影响应是成渝城市群生态修复的重点。
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金financially supported by the National Natural Science Foundation of China(grant no.31770679)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(grant no.KYCX24_1252)the China Scholarship Council(grant no.202308320354).
文摘Forest net primary productivity(NPP)constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity,which is closely related to forest age.Despite its significance,the impact of forest age on NPP is often ignored in future NPP projections.Here,we mapped forest age in Hunan Province at a 30-m resolution utilizing a combination of Landsat time series stack(LTSS),national forest inventory(NFI)data,and the relationships between height and age.Subsequently,NPP was derived from NFI data and the relationships between NPP and age was built for various forest types.Then forest NPP was predicted based on the NPP-age relationships under three future scenarios,assessing the impact of forest age on NPP.Our findings reveal substantial variations in forest NPP in Hunan Province under three future scenarios:under the age-only scenario,NPP peaks in 2041(133.56TgC·yr^(−1)),while NPP peaks three years later in 2044(141.14TgC·yr^(−1))under the natural development scenario.The maximum afforestation scenario exhibits the most rapid increase in NPP,with peaking in 2049(197.95TgC·yr^(−1)).However,with the aging of the forest,NPP is projected to then decrease by 7.54%,6.07%,and 7.47%in 2060,and 20.05%,19.74%,and 28.38%in 2100,respectively,compared to their peaks under the three scenarios.This indicates that forest NPP will continue to decline soon.Controlling the age structure of forests through selective logging,afforestation and reforestation,and encouraging natural regeneration after disturbance could mitigate this declining trend in forest NPP,but implications of these measures on the full forest carbon balance remain to be studied.Insights from the future multi-scenarios are expected to provide data to support sustainable forest management and national policy development,which will inform the achievement of carbon neutrality goals by 2060.