In this paper,we study the ground state standing wave solutions for the focusing bi-harmonic nonlinear Schrodinger equation with aμ-Laplacian term(BNLS).Such BNLS models the propagation of intense laser beams in a bu...In this paper,we study the ground state standing wave solutions for the focusing bi-harmonic nonlinear Schrodinger equation with aμ-Laplacian term(BNLS).Such BNLS models the propagation of intense laser beams in a bulk medium with a second-order dispersion term.Denoting by Qpthe ground state for the BNLS withμ=0,we prove that in the mass-subcritical regime p∈(1,1+8/d),there exist orbit ally stable ground state solutions for the BNLS when p∈(-λ0,∞)for someλ0=λ0(p,d,‖Qp‖L2)>0.Moreover,in the mass-critical case p=1+8/d,we prove the orbital stability on a certain mass level below‖Q*‖L2,provided thatμ∈(-λ1,0),where■and Q*=Q1+8/d.The proofs are mainly based on the profile decomposition and a sharp Gagliardo-Nirenberg type inequality.Our treatment allows us to fill the gap concerning the existence of the ground states for the BNLS when p is negative and p∈(1,1+8/d].展开更多
We study the blow-up solutions for the Davey-Stewartson system(D-S system, for short)in L2x(R2). First, we give the nonlinear profile decomposition of solutions for the D-S system. Then, we prove the existence of ...We study the blow-up solutions for the Davey-Stewartson system(D-S system, for short)in L2x(R2). First, we give the nonlinear profile decomposition of solutions for the D-S system. Then, we prove the existence of minimal mass blow-up solutions. Finally, by using the characteristic of minimal mass blow-up solutions, we obtain the limiting profile and a precisely mass concentration of L2 blow-up solutions for the D-S system.展开更多
基金partially supported by the National Natural Science Foundation of China(11501137)partially supported by the National Natural Science Foundation of China(11501395,12071323)the Guangdong Basic and Applied Basic Research Foundation(2016A030310258,2020A1515011019)。
文摘In this paper,we study the ground state standing wave solutions for the focusing bi-harmonic nonlinear Schrodinger equation with aμ-Laplacian term(BNLS).Such BNLS models the propagation of intense laser beams in a bulk medium with a second-order dispersion term.Denoting by Qpthe ground state for the BNLS withμ=0,we prove that in the mass-subcritical regime p∈(1,1+8/d),there exist orbit ally stable ground state solutions for the BNLS when p∈(-λ0,∞)for someλ0=λ0(p,d,‖Qp‖L2)>0.Moreover,in the mass-critical case p=1+8/d,we prove the orbital stability on a certain mass level below‖Q*‖L2,provided thatμ∈(-λ1,0),where■and Q*=Q1+8/d.The proofs are mainly based on the profile decomposition and a sharp Gagliardo-Nirenberg type inequality.Our treatment allows us to fill the gap concerning the existence of the ground states for the BNLS when p is negative and p∈(1,1+8/d].
基金Supported by National Natural Science Foundation of China(Grant No.11371267)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20125134120001)
文摘We study the blow-up solutions for the Davey-Stewartson system(D-S system, for short)in L2x(R2). First, we give the nonlinear profile decomposition of solutions for the D-S system. Then, we prove the existence of minimal mass blow-up solutions. Finally, by using the characteristic of minimal mass blow-up solutions, we obtain the limiting profile and a precisely mass concentration of L2 blow-up solutions for the D-S system.