Signaling pathways of gastric carcinogenesis and gastric cancer progression are being avidly studied to seek optimal treatment of gastric cancer. Among them, hepatocyte growth factor (HGF)/c-MET, phosphoinositide 3-ki...Signaling pathways of gastric carcinogenesis and gastric cancer progression are being avidly studied to seek optimal treatment of gastric cancer. Among them, hepatocyte growth factor (HGF)/c-MET, phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathways have been widely investigated. Their aberrant expression or mutation has been significantly associated with advanced stage or poor prognosis of gastric cancer. Recently, aberrations of immune checkpoints including programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) have been suggested as an important step in the formation of a microenvironment favorable for gastric cancer. Accomplishments in basic research have led to the development of novel agents targeting these signaling pathways. However, phase III studies of selective anti-HGF/c-MET antibodies and mTOR inhibitor failed to show significant benefits in terms of overall survival and progression-free survival. Few agents directly targeting STAT3 have been developed. However, this target is still critical issue in terms of chemoresistance, and SH2-containing protein tyrosine phosphatase 1 might be a significant link to effectively inhibit STAT3 activity. Inhibition of PD-1/PD-L1 showed durable efficacy in phase I studies, and phase III evaluation is warranted. Therapeutic strategy to concurrently inhibit multiple tyrosine kinases is a reasonable option, however, lapatinib needs to be further evaluated to identify good responders. Regorafenib has shown promising effectiveness in prolonging progression-free survival in a phase II study. In this topic highlight, we review the biologic roles and outcomes of clinical studies targeting these signaling pathways.展开更多
Immune checkpoint inhibitors are increasingly drawing much attention in the therapeutic development for cancer treatment. However, many cancer patients do not respond to treatments with immune checkpoint inhibitors, p...Immune checkpoint inhibitors are increasingly drawing much attention in the therapeutic development for cancer treatment. However, many cancer patients do not respond to treatments with immune checkpoint inhibitors, partly because of the lack of tumor-infiltrating effector T cells. Cancer vaccines may prime patients for treatments with immune checkpoint inhibitors by inducing effector T-ceU infiltration into the tumors and immune checkpoint signals. The combination of cancer vaccine and an immune checkpoint inhibitor may function synergistically to induce more effective antitumor immune responses, and clinical trials to test the combination are currently ongoing.展开更多
Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
The immunosuppressive phenotype of tumor cells extensively attenuates the immune activation effects of traditional treatments.In this work,a transferrin receptor(TfR)targeted immunostimulant(PTI)is fabricated for phot...The immunosuppressive phenotype of tumor cells extensively attenuates the immune activation effects of traditional treatments.In this work,a transferrin receptor(TfR)targeted immunostimulant(PTI)is fabricated for photodynamic immunotherapy against metastatic tumors by interrupting β-catenin signal pathway.To synthesize PTI,the photosensitizer conjugated TfR targeting peptide moiety(Palmitic-K(PpIX)-HAIYPRH)is unitized to encapsulate the transcription interrupter of ICG-001.On the one hand,the recognition of PTI and TfR can promote drug delivery into tumor cells to destruct primary tumors through photodynamic therapy and initiate an immunogenic cell death with the release of tumorassociated antigens.On the other hand,PTI will interrupt the binding between b-catenin andcAMP response element-binding protein(CREB),regulating the gene transcription to downregulate programmed death ligand 1(PD-L1)while upregulating CeC motif chemokine ligand 4(CCL4).Furthermore,the elevated CCL4 can recruit the dendritic cells to present tumor-specific antigens and promote T cells activation and infiltration,and the downregulated PD-L1 can avoid the immune evasion of tumor cells and activate systemic anti-tumor immunity to eradicate lung metastasis.This work may inspire the development of antibody antibody-free strategy to activate systemic immune response in consideration of immunosuppressive conditions.展开更多
文摘Signaling pathways of gastric carcinogenesis and gastric cancer progression are being avidly studied to seek optimal treatment of gastric cancer. Among them, hepatocyte growth factor (HGF)/c-MET, phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathways have been widely investigated. Their aberrant expression or mutation has been significantly associated with advanced stage or poor prognosis of gastric cancer. Recently, aberrations of immune checkpoints including programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) have been suggested as an important step in the formation of a microenvironment favorable for gastric cancer. Accomplishments in basic research have led to the development of novel agents targeting these signaling pathways. However, phase III studies of selective anti-HGF/c-MET antibodies and mTOR inhibitor failed to show significant benefits in terms of overall survival and progression-free survival. Few agents directly targeting STAT3 have been developed. However, this target is still critical issue in terms of chemoresistance, and SH2-containing protein tyrosine phosphatase 1 might be a significant link to effectively inhibit STAT3 activity. Inhibition of PD-1/PD-L1 showed durable efficacy in phase I studies, and phase III evaluation is warranted. Therapeutic strategy to concurrently inhibit multiple tyrosine kinases is a reasonable option, however, lapatinib needs to be further evaluated to identify good responders. Regorafenib has shown promising effectiveness in prolonging progression-free survival in a phase II study. In this topic highlight, we review the biologic roles and outcomes of clinical studies targeting these signaling pathways.
基金supported by the Viragh Foundation(L.Z.)National Institutes of Health(NIH)(Grant No.K23 CA148964,L.Z.)the NCI SPORE in Gastrointestinal Cancers(Grant No.P50 CA062924,L.Z.)
文摘Immune checkpoint inhibitors are increasingly drawing much attention in the therapeutic development for cancer treatment. However, many cancer patients do not respond to treatments with immune checkpoint inhibitors, partly because of the lack of tumor-infiltrating effector T cells. Cancer vaccines may prime patients for treatments with immune checkpoint inhibitors by inducing effector T-ceU infiltration into the tumors and immune checkpoint signals. The combination of cancer vaccine and an immune checkpoint inhibitor may function synergistically to induce more effective antitumor immune responses, and clinical trials to test the combination are currently ongoing.
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
基金the financial support of National Key R&D Program of China(No.2021YFD1800600)the National Natural Science Foundation of China(No.32371394)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515020043,China)the Special Projects in Key Areas of Colleges and Universities in Guangdong Province(No.2022ZDZX2046,China)Open Research Foundation of State Key Laboratory of Respiratory Diseases(No.SKLRD-OP-202204,China).
文摘The immunosuppressive phenotype of tumor cells extensively attenuates the immune activation effects of traditional treatments.In this work,a transferrin receptor(TfR)targeted immunostimulant(PTI)is fabricated for photodynamic immunotherapy against metastatic tumors by interrupting β-catenin signal pathway.To synthesize PTI,the photosensitizer conjugated TfR targeting peptide moiety(Palmitic-K(PpIX)-HAIYPRH)is unitized to encapsulate the transcription interrupter of ICG-001.On the one hand,the recognition of PTI and TfR can promote drug delivery into tumor cells to destruct primary tumors through photodynamic therapy and initiate an immunogenic cell death with the release of tumorassociated antigens.On the other hand,PTI will interrupt the binding between b-catenin andcAMP response element-binding protein(CREB),regulating the gene transcription to downregulate programmed death ligand 1(PD-L1)while upregulating CeC motif chemokine ligand 4(CCL4).Furthermore,the elevated CCL4 can recruit the dendritic cells to present tumor-specific antigens and promote T cells activation and infiltration,and the downregulated PD-L1 can avoid the immune evasion of tumor cells and activate systemic anti-tumor immunity to eradicate lung metastasis.This work may inspire the development of antibody antibody-free strategy to activate systemic immune response in consideration of immunosuppressive conditions.