Objective:The study aimed to assess medication management compliance and mental health in elderly patients with hypertension.Method:The study evaluated medication compliance and mental health status of elderly hyperte...Objective:The study aimed to assess medication management compliance and mental health in elderly patients with hypertension.Method:The study evaluated medication compliance and mental health status of elderly hypertensive patients in China using simple random sampling.Data was collected using the Morisky Medication Compliance Questionnaire,Hospital Anxiety and Depression Scale,and a checklist.Ethical practices were strictly observed.Results:A study of 100 elderly hypertensive patients found poor drug management compliance,with female patients showing worse compliance.Female patients were more vulnerable to anxiety and depression.The study also found no significant association between gender,age,education level,marital status,living standards,and medication compliance.Barriers to medication management included food and daily necessities,lack of awareness about the importance of drug treatment,and basic family needs.The lowest-ranked barriers were lack of support from government health clinics,low income,and lack of family support.Conclusion:Based on the results,the study proposes an educational plan for elderly hypertensive patients and their families,to be evaluated and implemented by the hospital and township community service center.The plan aims to improve medication management and lifestyle modification compliance,encourage active participation,and provide access to medical and mental health clinics,support groups,and counseling services.展开更多
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)f...This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.展开更多
The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks c...The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).展开更多
Due to the recent trend of software intelligence in the Fourth Industrial Revolution,deep learning has become a mainstream workload for modern computer systems.Since the data size of deep learning increasingly grows,m...Due to the recent trend of software intelligence in the Fourth Industrial Revolution,deep learning has become a mainstream workload for modern computer systems.Since the data size of deep learning increasingly grows,managing the limited memory capacity efficiently for deep learning workloads becomes important.In this paper,we analyze memory accesses in deep learning workloads and find out some unique characteristics differentiated from traditional workloads.First,when comparing instruction and data accesses,data access accounts for 96%–99%of total memory accesses in deep learning workloads,which is quite different from traditional workloads.Second,when comparing read and write accesses,write access dominates,accounting for 64%–80%of total memory accesses.Third,although write access makes up the majority of memory accesses,it shows a low access bias of 0.3 in the Zipf parameter.Fourth,in predicting re-access,recency is important in read access,but frequency provides more accurate information in write access.Based on these observations,we introduce a Non-Volatile Random Access Memory(NVRAM)-accelerated memory architecture for deep learning workloads,and present a new memory management policy for this architecture.By considering the memory access characteristics of deep learning workloads,the proposed policy improves memory performance by 64.3%on average compared to the CLOCK policy.展开更多
Recently,various mobile apps have included more features to improve user convenience.Mobile operating systems load as many apps into memory for faster app launching and execution.The least recently used(LRU)-based ter...Recently,various mobile apps have included more features to improve user convenience.Mobile operating systems load as many apps into memory for faster app launching and execution.The least recently used(LRU)-based termination of cached apps is a widely adopted approach when free space of the main memory is running low.However,the LRUbased cached app termination does not distinguish between frequently or infrequently used apps.The app launch performance degrades if LRU terminates frequently used apps.Recent studies have suggested the potential of using users’app usage patterns to predict the next app launch and address the limitations of the current least recently used(LRU)approach.However,existing methods only focus on predicting the probability of the next launch and do not consider how soon the app will launch again.In this paper,we present a new approach for predicting future app launches by utilizing the relaunch distance.We define the relaunch distance as the interval between two consecutive launches of an app and propose a memory management based on app relaunch prediction(M2ARP).M2ARP utilizes past app usage patterns to predict the relaunch distance.It uses the predicted relaunch distance to determine which apps are least likely to be launched soon and terminate them to improve the efficiency of the main memory.展开更多
Objective:The enhanced recovery after surgery(ERAS)program is less implemented in gastric cancer patients.The purpose of this survey is to investigate the implementation status of ERAS in perioperative period in gastr...Objective:The enhanced recovery after surgery(ERAS)program is less implemented in gastric cancer patients.The purpose of this survey is to investigate the implementation status of ERAS in perioperative period in gastric cancer.Methods:This clinical observational study enrolled 329 patients between January 2020 and August 2020 in a single gastric cancer center.The questionnaire consisted of 4 par ts:basic information,preoperative status,intraoperative status,and postoperative status of ERAS implementation in gastric cancer surgery.Results:In the preoperative period,patients'education and counseling(100%)were well adopted.Smoking cessation(34.6%),drinking cessation(36.9%),avoidance of preoperative mechanical bowel preparation(24.3%),respiratory function training(11.2%),and administration of carbohydrate-rich drink before surgery(0.6%)were relatively not well adopted.During the operation,maintenance of intraoperative normothermia and fluid management(100%),as well as epidural analgesia(81.5%),were well adopted.Thromboprophylaxis was performed in 133(40.4%)patients.In the postoperative period,early active mobilization was implemented about 9.5 h,and early ambulation was implemented about 39.5 h,after surgery.A total of 140(42.5%)patients received prolonged prophylactic antibiotics;268(81.5%)patients were provided diet upon gas passage;and 320(97.3%)patients received intravenous fluid administration more than 5 d after surgery.The practice rate of early removal of urinary catheter(0%)and nasogastric tube(15.5%)was relatively low.A total of 11(3.3%)patients experienced postoperative complication,and 1(0.3%)patient received unplanned reoperation.The average costs were¥59,500,and the average hospital stay was 12(5,36)d.Conclusions:Standard perioperative management of ERAS program in gastric cancer surgery in China still requires improvement.展开更多
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis...This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.展开更多
We used a goal programming technique to determine the optimal harvest volume for the Iranian Caspian forest. We collected data including volume, growth, wood price at forest roadside, and variable harvesting costs. Th...We used a goal programming technique to determine the optimal harvest volume for the Iranian Caspian forest. We collected data including volume, growth, wood price at forest roadside, and variable harvesting costs. The allometric method was used to quantify seques- trated carbon. Regression analysis was used to derive growth models. Expected mean price was estimated using wood price and variable harvesting costs. Questionnaire was used to determine the constraints and the equation coefficients of the goal programming model. The optimal volume was determined using the goal programming method according to multipurpose forest management. LINGO software was used for analysis. Results indicated that the optimum volumes of species were 250.25 m3.ha-1 for beech, 59 m3.ha-1 for hornbeam, 73 m3.ha-1 for oak, 41 m3.ha-1 for alder, and 32 m3.ha-1 for other species. The total optimum volume is 455.25 m3.ha-1.展开更多
Planning for water quality management is important for facilitating sustainable socio-economic development;however, the planning is also complicated by a variety of uncertainties and nonlinearities. In this study, an ...Planning for water quality management is important for facilitating sustainable socio-economic development;however, the planning is also complicated by a variety of uncertainties and nonlinearities. In this study, an interval-parameter fuzzy robust nonlinear programming (IFRNP) model was developed for water quality management to deal with such difficulties. The developed model incorporated interval nonlinear programming (INP) and fuzzy robust programming (FRP) methods within a general optimization framework. The developed IFRNP model not only could explicitly deal with uncertainties represented as discrete interval numbers and fuzzy membership functions, but also was able to deal with nonlinearities in the objective function.展开更多
The potential demand on financial risk management has being increased considerably by the reason of Basel 11 regulations and instabilities in economy. In recent years, financial institutions and companies have been st...The potential demand on financial risk management has being increased considerably by the reason of Basel 11 regulations and instabilities in economy. In recent years, financial institutions and companies have been struggled for building up intensive financial risk management tools due to Basel II guidance on establishing financial self-assessment systems. In this respect, decision support system has a significant role on effectuating intensive financial risk management roadmap. In this study, a reformative financial risk management system is presented with the combination of determining financial risks with their importance, calculating risk scores and making suggestions based on detected risk scores by applying corrective actions. First, financial risk factors and indicators of these risk variables are selected and weights of these variables are specified by using fuzzy goal programming. After that, total risk scores are calculated and amendatory financial activities are appeared by means of expertons method which also provides possibilities of the alternative decisions. To illustrate the performance of integrated and multistage decision support system, a survey is applied on the end users.展开更多
Fusarium head blight(FHB)is a worldwide devastating disease of small grain cereals and Fusarium graminearum species complex(FGSC)is the major pathogen causing the disease.The epidemics of FHB lead to the reduction of ...Fusarium head blight(FHB)is a worldwide devastating disease of small grain cereals and Fusarium graminearum species complex(FGSC)is the major pathogen causing the disease.The epidemics of FHB lead to the reduction of grain yield and economic losses.Additionally,mycotoxins produced by the FHB pathogens are hazardous to the health of human and livestock.In this review,we summarize the epidemiology of FHB,and introduce effects of this disease on economy,environment and food safety.We focus on the integrated management approaches for controlling FHB including agronomic practices,resistant cultivars,chemical control,and biocontrol.In addition,we also discuss the potential novel management strategies against FHB and mycotoxin.展开更多
Global Memory Net (GMNet) is intended to be an effective gateway to the world cultural, historical, and heritage image collections from selected academic educational and research partners in the world. Much of these u...Global Memory Net (GMNet) is intended to be an effective gateway to the world cultural, historical, and heritage image collections from selected academic educational and research partners in the world. Much of these unique collections of great value to education and research are not currently accessible due to distance, form, and technical barriers. This project is to find new ways to enable users to access and exploit these significant research collections via global network. As GMNet is ending its first 5-year phase in October 2005, it has contributed substantially to the community building in digital library development by ac- commodating numerous collaborators and technical staff from various parts of the world to spend 3 to 5 months as a full-member of the GMNet team in Boston. They have come from different parts of China—such as Sichuan, Hainan, Shanghai and Xi’an; Croatia; and Hanoi, Vietnam. In addition to contribute to the overall system development and enhancement of system function- alities, they have brought valuable sample image collections of their own institutions/countries, and actually developed prototype collections as a part of GMNet. This paper describes the exciting and productive experience of the first of this visiting research group in developing the GMNet’s Version 2.0 PHP-based system under Prof. Chen’s overall supervision. It also describes both the system’s technical level structure—user/Web-based application/data, and complex functionalities with multi-collection, multi-lingual, multi-modal searching capabilities; system management capabilities; as well as provisions for user uploads and retrieval for our own projects. This Version 2.0 system is built on the Linux/Apache/PHP/MySQL platform. What is described in this paper is an actual case which has formed a base for further new development by others in the research group. It demonstrates fully the value of the synergistic collaboration among global partners for universal digital library development. More information can be found in http://www.memorynet.org/.展开更多
The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manag...The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).展开更多
In this paper,we propose an analytical stochastic dynamic programming(SDP)algorithm to address the optimal management problem of price-maker community energy storage.As a price-maker,energy storage smooths price diffe...In this paper,we propose an analytical stochastic dynamic programming(SDP)algorithm to address the optimal management problem of price-maker community energy storage.As a price-maker,energy storage smooths price differences,thus decreasing energy arbitrage value.However,this price-smoothing effect can result in significant external welfare changes by reduc-ing consumer costs and producer revenues,which is not negligible for the community with energy storage systems.As such,we formulate community storage management as an SDP that aims to maximize both energy arbitrage and community welfare.To incorporate market interaction into the SDP format,we propose a framework that derives partial but sufficient market information to approximate impact of storage operations on market prices.Then we present an analytical SDP algorithm that does not require state discretization.Apart from computational efficiency,another advantage of the analytical algorithm is to guide energy storage to charge/discharge by directly comparing its current marginal value with expected future marginal value.Case studies indicate community-owned energy storage that maximizes both arbitrage and welfare value gains more benefits than storage that maximizes only arbitrage.The proposed algorithm ensures optimality and largely reduces the computational complexity of the standard SDP.Index Terms-Analytical stochastic dynamic programming,energy management,energy storage,price-maker,social welfare.展开更多
AIM: To assess the effectiveness of the Chronic Disease Self-Management Program(CDSMP) on glycated hemoglobin A1c(HbA1c) and selected self-reported measures.METHODS: We compared patients who received a diabetes self-c...AIM: To assess the effectiveness of the Chronic Disease Self-Management Program(CDSMP) on glycated hemoglobin A1c(HbA1c) and selected self-reported measures.METHODS: We compared patients who received a diabetes self-care behavioral intervention, the CDSMP developed at the Stanford University, with controls whoreceived usual care on their HbA1c and selected self-reported measures, including diabetes self-care activities, health-related quality of life(HRQOL), pain and fatigue. The subjects were a subset of participants enrolled in a randomized controlled trial that took place at seven regional clinics of a university-affiliated integrated healthcare system of a multi-specialty group practice between January 2009 and June 2011. The primary outcome was change in HbA1c from randomization to 12 mo. Data were analyzed using multilevel statistical models and linear mixed models to provide unbiased estimates of intervention effects.RESULTS: Demographic and baseline clinical characteristics were generally comparable between the two groups. The average baseline HbA1c values in the CDSMP and control groups were 9.4% and 9.2%, respectively. Significant reductions in HbA1c were seen at 12 mo for the two groups, with adjusted changes around 0.6%(P < 0.0001), but the reductions did not differ significantly between the two groups(P = 0.885). Few significant differences were observed in participants' diabetes self-care activities. No significant differences were observed in the participants' HRQOL, pain, or fatigue measures.CONCLUSION: The CDSMP intervention may not lower HbA1c any better than good routine care in an integrated healthcare system. More research is needed to understand the benefits of self-management programs in primary care in different settings and populations.展开更多
Dynamic programming(DP)is frequently used to obtain the optimal solution to the hybrid electric vehicle(HEV)energy management.The trade-off between the accuracy and the computational effort is the biggest problem for ...Dynamic programming(DP)is frequently used to obtain the optimal solution to the hybrid electric vehicle(HEV)energy management.The trade-off between the accuracy and the computational effort is the biggest problem for the DP method.The closed-form solution to the DP is proposed to solve this problem.Firstly,the affine linear model of the engine fuel rate is obtained based on engine test data.The piecewise linear approximation of the motor power demand is obtained considering the different energy flows in the charging and discharging stages of the battery.Then,the second-order Taylor expansion for the cost matrix at each time and state grid point is introduced to get the closed-form solution of the optimal torque split.The results show that this method can greatly reduce the computing burden by 93%while ensuring near-optimal fuel economy compared with the conventional DP method.展开更多
The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented i...The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented in this paper.The results illustrate that thedevice can be used to store the analog weights for the neural networks,and the method that thestored value is adjusted continuously to approach to a given analog values is a rather practicalmethod for storing weights of neural networks.展开更多
文摘Objective:The study aimed to assess medication management compliance and mental health in elderly patients with hypertension.Method:The study evaluated medication compliance and mental health status of elderly hypertensive patients in China using simple random sampling.Data was collected using the Morisky Medication Compliance Questionnaire,Hospital Anxiety and Depression Scale,and a checklist.Ethical practices were strictly observed.Results:A study of 100 elderly hypertensive patients found poor drug management compliance,with female patients showing worse compliance.Female patients were more vulnerable to anxiety and depression.The study also found no significant association between gender,age,education level,marital status,living standards,and medication compliance.Barriers to medication management included food and daily necessities,lack of awareness about the importance of drug treatment,and basic family needs.The lowest-ranked barriers were lack of support from government health clinics,low income,and lack of family support.Conclusion:Based on the results,the study proposes an educational plan for elderly hypertensive patients and their families,to be evaluated and implemented by the hospital and township community service center.The plan aims to improve medication management and lifestyle modification compliance,encourage active participation,and provide access to medical and mental health clinics,support groups,and counseling services.
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
文摘This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.
文摘The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).
基金supported in part by the NRF(National Research Foundation of Korea)Grant(No.2019R1A2C1009275)by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by theKorean government(MSIT)(No.2021-0-02068,Artificial Intelligence Innovation Hub).
文摘Due to the recent trend of software intelligence in the Fourth Industrial Revolution,deep learning has become a mainstream workload for modern computer systems.Since the data size of deep learning increasingly grows,managing the limited memory capacity efficiently for deep learning workloads becomes important.In this paper,we analyze memory accesses in deep learning workloads and find out some unique characteristics differentiated from traditional workloads.First,when comparing instruction and data accesses,data access accounts for 96%–99%of total memory accesses in deep learning workloads,which is quite different from traditional workloads.Second,when comparing read and write accesses,write access dominates,accounting for 64%–80%of total memory accesses.Third,although write access makes up the majority of memory accesses,it shows a low access bias of 0.3 in the Zipf parameter.Fourth,in predicting re-access,recency is important in read access,but frequency provides more accurate information in write access.Based on these observations,we introduce a Non-Volatile Random Access Memory(NVRAM)-accelerated memory architecture for deep learning workloads,and present a new memory management policy for this architecture.By considering the memory access characteristics of deep learning workloads,the proposed policy improves memory performance by 64.3%on average compared to the CLOCK policy.
基金This work was supported in part by the National Research Foundation of Korea(NRF)Grant funded by the Korea Government(MSIT)under Grant 2020R1A2C100526513in part by the R&D Program for Forest Science Technology(Project No.2021338C10-2323-CD02)provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Recently,various mobile apps have included more features to improve user convenience.Mobile operating systems load as many apps into memory for faster app launching and execution.The least recently used(LRU)-based termination of cached apps is a widely adopted approach when free space of the main memory is running low.However,the LRUbased cached app termination does not distinguish between frequently or infrequently used apps.The app launch performance degrades if LRU terminates frequently used apps.Recent studies have suggested the potential of using users’app usage patterns to predict the next app launch and address the limitations of the current least recently used(LRU)approach.However,existing methods only focus on predicting the probability of the next launch and do not consider how soon the app will launch again.In this paper,we present a new approach for predicting future app launches by utilizing the relaunch distance.We define the relaunch distance as the interval between two consecutive launches of an app and propose a memory management based on app relaunch prediction(M2ARP).M2ARP utilizes past app usage patterns to predict the relaunch distance.It uses the predicted relaunch distance to determine which apps are least likely to be launched soon and terminate them to improve the efficiency of the main memory.
基金supported by Program of Shanghai Shenkang Hospital Development Center (SHDC22020204)Nursing Science Support Program of Zhongshan Hospital,Fudan University (XK-082-007)Management Fund of Zhongshan Hospital,Fudan University (2022ZSGL01)。
文摘Objective:The enhanced recovery after surgery(ERAS)program is less implemented in gastric cancer patients.The purpose of this survey is to investigate the implementation status of ERAS in perioperative period in gastric cancer.Methods:This clinical observational study enrolled 329 patients between January 2020 and August 2020 in a single gastric cancer center.The questionnaire consisted of 4 par ts:basic information,preoperative status,intraoperative status,and postoperative status of ERAS implementation in gastric cancer surgery.Results:In the preoperative period,patients'education and counseling(100%)were well adopted.Smoking cessation(34.6%),drinking cessation(36.9%),avoidance of preoperative mechanical bowel preparation(24.3%),respiratory function training(11.2%),and administration of carbohydrate-rich drink before surgery(0.6%)were relatively not well adopted.During the operation,maintenance of intraoperative normothermia and fluid management(100%),as well as epidural analgesia(81.5%),were well adopted.Thromboprophylaxis was performed in 133(40.4%)patients.In the postoperative period,early active mobilization was implemented about 9.5 h,and early ambulation was implemented about 39.5 h,after surgery.A total of 140(42.5%)patients received prolonged prophylactic antibiotics;268(81.5%)patients were provided diet upon gas passage;and 320(97.3%)patients received intravenous fluid administration more than 5 d after surgery.The practice rate of early removal of urinary catheter(0%)and nasogastric tube(15.5%)was relatively low.A total of 11(3.3%)patients experienced postoperative complication,and 1(0.3%)patient received unplanned reoperation.The average costs were¥59,500,and the average hospital stay was 12(5,36)d.Conclusions:Standard perioperative management of ERAS program in gastric cancer surgery in China still requires improvement.
基金supported by the National Basic Research Program of China(2010CB951002)the Dr.Western-funded Project of Chinese Academy of Science(XBBS201010 and XBBS201005)+1 种基金the National Natural Sciences Foundation of China (51190095)the Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering(sklhse-2012-A03)
文摘This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.
文摘We used a goal programming technique to determine the optimal harvest volume for the Iranian Caspian forest. We collected data including volume, growth, wood price at forest roadside, and variable harvesting costs. The allometric method was used to quantify seques- trated carbon. Regression analysis was used to derive growth models. Expected mean price was estimated using wood price and variable harvesting costs. Questionnaire was used to determine the constraints and the equation coefficients of the goal programming model. The optimal volume was determined using the goal programming method according to multipurpose forest management. LINGO software was used for analysis. Results indicated that the optimum volumes of species were 250.25 m3.ha-1 for beech, 59 m3.ha-1 for hornbeam, 73 m3.ha-1 for oak, 41 m3.ha-1 for alder, and 32 m3.ha-1 for other species. The total optimum volume is 455.25 m3.ha-1.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
文摘Planning for water quality management is important for facilitating sustainable socio-economic development;however, the planning is also complicated by a variety of uncertainties and nonlinearities. In this study, an interval-parameter fuzzy robust nonlinear programming (IFRNP) model was developed for water quality management to deal with such difficulties. The developed model incorporated interval nonlinear programming (INP) and fuzzy robust programming (FRP) methods within a general optimization framework. The developed IFRNP model not only could explicitly deal with uncertainties represented as discrete interval numbers and fuzzy membership functions, but also was able to deal with nonlinearities in the objective function.
文摘The potential demand on financial risk management has being increased considerably by the reason of Basel 11 regulations and instabilities in economy. In recent years, financial institutions and companies have been struggled for building up intensive financial risk management tools due to Basel II guidance on establishing financial self-assessment systems. In this respect, decision support system has a significant role on effectuating intensive financial risk management roadmap. In this study, a reformative financial risk management system is presented with the combination of determining financial risks with their importance, calculating risk scores and making suggestions based on detected risk scores by applying corrective actions. First, financial risk factors and indicators of these risk variables are selected and weights of these variables are specified by using fuzzy goal programming. After that, total risk scores are calculated and amendatory financial activities are appeared by means of expertons method which also provides possibilities of the alternative decisions. To illustrate the performance of integrated and multistage decision support system, a survey is applied on the end users.
基金the Science and Technology Project of Zhejiang Province,China(2018C02G2011110)the National Natural Science Foundation of China(31930088 and 32001855)the earmarked fund for China Agriculture Research System(CARS-3-1-29).
文摘Fusarium head blight(FHB)is a worldwide devastating disease of small grain cereals and Fusarium graminearum species complex(FGSC)is the major pathogen causing the disease.The epidemics of FHB lead to the reduction of grain yield and economic losses.Additionally,mycotoxins produced by the FHB pathogens are hazardous to the health of human and livestock.In this review,we summarize the epidemiology of FHB,and introduce effects of this disease on economy,environment and food safety.We focus on the integrated management approaches for controlling FHB including agronomic practices,resistant cultivars,chemical control,and biocontrol.In addition,we also discuss the potential novel management strategies against FHB and mycotoxin.
基金supported by the US National Science Foundation/International Digital Library Program(Grant No.NSF/CISE/IIS-9905833).
文摘Global Memory Net (GMNet) is intended to be an effective gateway to the world cultural, historical, and heritage image collections from selected academic educational and research partners in the world. Much of these unique collections of great value to education and research are not currently accessible due to distance, form, and technical barriers. This project is to find new ways to enable users to access and exploit these significant research collections via global network. As GMNet is ending its first 5-year phase in October 2005, it has contributed substantially to the community building in digital library development by ac- commodating numerous collaborators and technical staff from various parts of the world to spend 3 to 5 months as a full-member of the GMNet team in Boston. They have come from different parts of China—such as Sichuan, Hainan, Shanghai and Xi’an; Croatia; and Hanoi, Vietnam. In addition to contribute to the overall system development and enhancement of system function- alities, they have brought valuable sample image collections of their own institutions/countries, and actually developed prototype collections as a part of GMNet. This paper describes the exciting and productive experience of the first of this visiting research group in developing the GMNet’s Version 2.0 PHP-based system under Prof. Chen’s overall supervision. It also describes both the system’s technical level structure—user/Web-based application/data, and complex functionalities with multi-collection, multi-lingual, multi-modal searching capabilities; system management capabilities; as well as provisions for user uploads and retrieval for our own projects. This Version 2.0 system is built on the Linux/Apache/PHP/MySQL platform. What is described in this paper is an actual case which has formed a base for further new development by others in the research group. It demonstrates fully the value of the synergistic collaboration among global partners for universal digital library development. More information can be found in http://www.memorynet.org/.
文摘The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).
基金supported in part by the Joint Funds of the National Natural Science Foundation of China(U2066214)in part by Shanghai Sailing Program(22YF1414500)in part by the Project(SKLD22KM19)funded by State Key Laboratory of Power System Operation and Control.
文摘In this paper,we propose an analytical stochastic dynamic programming(SDP)algorithm to address the optimal management problem of price-maker community energy storage.As a price-maker,energy storage smooths price differences,thus decreasing energy arbitrage value.However,this price-smoothing effect can result in significant external welfare changes by reduc-ing consumer costs and producer revenues,which is not negligible for the community with energy storage systems.As such,we formulate community storage management as an SDP that aims to maximize both energy arbitrage and community welfare.To incorporate market interaction into the SDP format,we propose a framework that derives partial but sufficient market information to approximate impact of storage operations on market prices.Then we present an analytical SDP algorithm that does not require state discretization.Apart from computational efficiency,another advantage of the analytical algorithm is to guide energy storage to charge/discharge by directly comparing its current marginal value with expected future marginal value.Case studies indicate community-owned energy storage that maximizes both arbitrage and welfare value gains more benefits than storage that maximizes only arbitrage.The proposed algorithm ensures optimality and largely reduces the computational complexity of the standard SDP.Index Terms-Analytical stochastic dynamic programming,energy management,energy storage,price-maker,social welfare.
基金Supported by The National Institutes of Health’s National Institute on Minority Health and Health Disparities,No.#1P20MD002295
文摘AIM: To assess the effectiveness of the Chronic Disease Self-Management Program(CDSMP) on glycated hemoglobin A1c(HbA1c) and selected self-reported measures.METHODS: We compared patients who received a diabetes self-care behavioral intervention, the CDSMP developed at the Stanford University, with controls whoreceived usual care on their HbA1c and selected self-reported measures, including diabetes self-care activities, health-related quality of life(HRQOL), pain and fatigue. The subjects were a subset of participants enrolled in a randomized controlled trial that took place at seven regional clinics of a university-affiliated integrated healthcare system of a multi-specialty group practice between January 2009 and June 2011. The primary outcome was change in HbA1c from randomization to 12 mo. Data were analyzed using multilevel statistical models and linear mixed models to provide unbiased estimates of intervention effects.RESULTS: Demographic and baseline clinical characteristics were generally comparable between the two groups. The average baseline HbA1c values in the CDSMP and control groups were 9.4% and 9.2%, respectively. Significant reductions in HbA1c were seen at 12 mo for the two groups, with adjusted changes around 0.6%(P < 0.0001), but the reductions did not differ significantly between the two groups(P = 0.885). Few significant differences were observed in participants' diabetes self-care activities. No significant differences were observed in the participants' HRQOL, pain, or fatigue measures.CONCLUSION: The CDSMP intervention may not lower HbA1c any better than good routine care in an integrated healthcare system. More research is needed to understand the benefits of self-management programs in primary care in different settings and populations.
基金National Natural Science Foundation of China:[Grant Number 52077217].
文摘Dynamic programming(DP)is frequently used to obtain the optimal solution to the hybrid electric vehicle(HEV)energy management.The trade-off between the accuracy and the computational effort is the biggest problem for the DP method.The closed-form solution to the DP is proposed to solve this problem.Firstly,the affine linear model of the engine fuel rate is obtained based on engine test data.The piecewise linear approximation of the motor power demand is obtained considering the different energy flows in the charging and discharging stages of the battery.Then,the second-order Taylor expansion for the cost matrix at each time and state grid point is introduced to get the closed-form solution of the optimal torque split.The results show that this method can greatly reduce the computing burden by 93%while ensuring near-optimal fuel economy compared with the conventional DP method.
文摘The features of the floating gate devices as analog memory have been investigatedexperimentally.Programming properties of the devices,compatibility and endurance of program-ming,and programming methods are presented in this paper.The results illustrate that thedevice can be used to store the analog weights for the neural networks,and the method that thestored value is adjusted continuously to approach to a given analog values is a rather practicalmethod for storing weights of neural networks.