Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun...Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.展开更多
In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomateri...In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomaterials. The Mohr-Coulomb strength criterion was implemented into the code to describe the elasto-brittle behaviours of geomaterials while the solid-structure(reinforcing pile) interaction was simulated as an elasto-brittle material. The Weibull statistical approach was applied to describing the heterogeneity of geomaterials. As an application of general particle dynamics to slopes, the interaction between the slopes and the reinforcing pile was modelled. The contact between the geomaterials and the reinforcing pile was modelled by using the coupling condition associated with a Lennard-Jones repulsive force. The safety factor, corresponding to the minimum shear strength reduction factor "R", was obtained, and the slip surface of the slope was determined. The numerical results are in good agreement with those obtained from limit equilibrium method and finite element method. It indicates that the proposed geomaterial-structure interaction algorithm works well in the GPD framework.展开更多
Ultra-wideband (UWB) microwave imaging is a promising method for breast cancer detection based on the large contrast of electric parameters between the malignant tumor and its surrounded normal breast organisms. In ...Ultra-wideband (UWB) microwave imaging is a promising method for breast cancer detection based on the large contrast of electric parameters between the malignant tumor and its surrounded normal breast organisms. In the case of multiple tumors being present, the conventional imaging approaches may be ineffective to detect all the tumors clearly. In this paper, a progressive processing method is proposed for detecting more than one tumor. The method is divided into three stages: primary detection, refocusing and image optimization. To test the feasibility of the approach, a numerical breast model is developed based on the realistic magnetic resonance image (MRI). Two tumors are assumed embedded in different positions. Successful detection of a 3.6 mm-diameter tumor at a depth of 42 mm is achieved. The correct information of both tumors is shown in the reconstructed image, suggesting that the progressive processing method is promising for multi-tumor detection.展开更多
The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was...The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was held on September 22-25,1992,in Beijing,China.About 350 scholars and experts from 25 countries and regions showed up at the conference and 130 papers were presented,among them 98 papers are of mineral processing.Some of the papers given in mineral processing are summed up as follows.展开更多
The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last year...The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.展开更多
In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factoria...In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.展开更多
In the early hours of June 24,2017,a major landslide event occurred in Xinmo Village,Sichuan Province,China.The landslide instantly devastated the whole village.Ten people died and 73 were missing in this major landsl...In the early hours of June 24,2017,a major landslide event occurred in Xinmo Village,Sichuan Province,China.The landslide instantly devastated the whole village.Ten people died and 73 were missing in this major landslide event.The study area has suffered from several strong earthquakes in the past 100 y.Present studies have reported that the cumulative damage effect of the Xinmo landslide induced by earthquake is obvious.In this study,we conducted a shaking table test based on the detailed geological survey,historical seismic data,satellite optical image,unmanned aerial vehicle photography.The test result presents the characteristics of multistage seismic damage and progressive deformation process of the Xinmo landslide model,and shows that the historical earthquakes have caused serious damage to the interior of rock mass in the source area.The test also shows that the cumulative damage of the model increases with an increase in duration of earthquake loading.When the excitation intensity increases to a certain value,the damage accumulation velocity of the model suddenly increases.It reveals that frequent historical earthquake loads can be regarded as a main reason for the damage and deterioration of landslide rock mass.Damage accumulation and superposition occur in the slope.Under a long-term gravity,deformation of the slope gradually increases until catastrophic failure is triggered.The progressive deformation process of slope is summarized.Firstly,under strong earthquakes loading,a tensile fracture surface forms at the rear edge of the wavy deformation high and steep bedding slope.It reaches a certain critical depth and expands along the interlayer structural plane.Meantime,damaged fissures perpendicular to the structural plane also appear in the steep-gentle turning area of the slope.Secondly,under a coupling action of seismic loading and gravity,the interlaminar tensile crack surface at the rear edge of the slope extends to depth continuously.Meanwhile,rock fracture occurs in the steep-gentle turning area.The“two-way damage propagation”mode of the interlayer tensile crack surface occurs until the sliding surface is connected.However,due to the“locking section”effect of rock mass at the slope foot,it can still maintain a short-term stability.Thirdly,under the influences of the heavy rainfall before a landslide and the long-term gravity of the upper sliding mass,rock mass in the steep section at the slope foot breaks outward.Finally,a catastrophic landslide occurs.展开更多
基金supported by National Key R&D Program of China(No.2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)National Natural Science Foundation of China Youth Fund(No.52104230).
文摘Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.
基金Projects(51325903,51279218)supported by the National Natural Science Foundation of ChinaProject(cstc2013kjrcljrccj0001)supported by the Natural Science Foundation Project of CQ CSTC,ChinaProject(20130191110037)supported by Research fund by the Doctoral Program of Higher Education of China
文摘In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomaterials. The Mohr-Coulomb strength criterion was implemented into the code to describe the elasto-brittle behaviours of geomaterials while the solid-structure(reinforcing pile) interaction was simulated as an elasto-brittle material. The Weibull statistical approach was applied to describing the heterogeneity of geomaterials. As an application of general particle dynamics to slopes, the interaction between the slopes and the reinforcing pile was modelled. The contact between the geomaterials and the reinforcing pile was modelled by using the coupling condition associated with a Lennard-Jones repulsive force. The safety factor, corresponding to the minimum shear strength reduction factor "R", was obtained, and the slip surface of the slope was determined. The numerical results are in good agreement with those obtained from limit equilibrium method and finite element method. It indicates that the proposed geomaterial-structure interaction algorithm works well in the GPD framework.
基金supported by the National Natural Science Foundation of China(Grant No.61271323)the Open Project from State Key Laboratory of MillimeterWaves,China(Grant No.K200913)
文摘Ultra-wideband (UWB) microwave imaging is a promising method for breast cancer detection based on the large contrast of electric parameters between the malignant tumor and its surrounded normal breast organisms. In the case of multiple tumors being present, the conventional imaging approaches may be ineffective to detect all the tumors clearly. In this paper, a progressive processing method is proposed for detecting more than one tumor. The method is divided into three stages: primary detection, refocusing and image optimization. To test the feasibility of the approach, a numerical breast model is developed based on the realistic magnetic resonance image (MRI). Two tumors are assumed embedded in different positions. Successful detection of a 3.6 mm-diameter tumor at a depth of 42 mm is achieved. The correct information of both tumors is shown in the reconstructed image, suggesting that the progressive processing method is promising for multi-tumor detection.
文摘The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was held on September 22-25,1992,in Beijing,China.About 350 scholars and experts from 25 countries and regions showed up at the conference and 130 papers were presented,among them 98 papers are of mineral processing.Some of the papers given in mineral processing are summed up as follows.
文摘The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.
文摘In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.
基金financially supported by the National Natural Science Foundation of China(No.42377194)the Sichuan Science and Technology Program(No.2023NSFSC0282)+1 种基金the Sichuan Province Central Government Guides Local Science and Technology Development Special Project(No.2023ZYD0151)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(No.SKLGP2021Z008)。
文摘In the early hours of June 24,2017,a major landslide event occurred in Xinmo Village,Sichuan Province,China.The landslide instantly devastated the whole village.Ten people died and 73 were missing in this major landslide event.The study area has suffered from several strong earthquakes in the past 100 y.Present studies have reported that the cumulative damage effect of the Xinmo landslide induced by earthquake is obvious.In this study,we conducted a shaking table test based on the detailed geological survey,historical seismic data,satellite optical image,unmanned aerial vehicle photography.The test result presents the characteristics of multistage seismic damage and progressive deformation process of the Xinmo landslide model,and shows that the historical earthquakes have caused serious damage to the interior of rock mass in the source area.The test also shows that the cumulative damage of the model increases with an increase in duration of earthquake loading.When the excitation intensity increases to a certain value,the damage accumulation velocity of the model suddenly increases.It reveals that frequent historical earthquake loads can be regarded as a main reason for the damage and deterioration of landslide rock mass.Damage accumulation and superposition occur in the slope.Under a long-term gravity,deformation of the slope gradually increases until catastrophic failure is triggered.The progressive deformation process of slope is summarized.Firstly,under strong earthquakes loading,a tensile fracture surface forms at the rear edge of the wavy deformation high and steep bedding slope.It reaches a certain critical depth and expands along the interlayer structural plane.Meantime,damaged fissures perpendicular to the structural plane also appear in the steep-gentle turning area of the slope.Secondly,under a coupling action of seismic loading and gravity,the interlaminar tensile crack surface at the rear edge of the slope extends to depth continuously.Meanwhile,rock fracture occurs in the steep-gentle turning area.The“two-way damage propagation”mode of the interlayer tensile crack surface occurs until the sliding surface is connected.However,due to the“locking section”effect of rock mass at the slope foot,it can still maintain a short-term stability.Thirdly,under the influences of the heavy rainfall before a landslide and the long-term gravity of the upper sliding mass,rock mass in the steep section at the slope foot breaks outward.Finally,a catastrophic landslide occurs.