期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于渐进比率掩蔽目标的自适应噪声估计方法
1
作者 高建清 屠彦辉 +1 位作者 马峰 付中华 《计算机应用》 CSCD 北大核心 2023年第4期1303-1308,共6页
基于深度学习的语音增强算法的性能通常优于传统的基于噪声抑制的语音增强算法。然而当训练数据和测试数据之间存在不匹配时,基于深度学习的语音增强算法通常无法正常工作。针对上述问题,提出一种新的基于渐进比率掩蔽(PRM)的自适应噪... 基于深度学习的语音增强算法的性能通常优于传统的基于噪声抑制的语音增强算法。然而当训练数据和测试数据之间存在不匹配时,基于深度学习的语音增强算法通常无法正常工作。针对上述问题,提出一种新的基于渐进比率掩蔽(PRM)的自适应噪声估计(PRM-ANE)方法,并把它作为语音识别系统的预处理方法。所提方法综合利用了具有帧级别的噪声跟踪能力的改进最小统计量控制递归平均(IMCRA)算法和具有学习噪声和语音之间复杂非线性映射关系的渐进学习算法这两种算法。首先,使用二维卷积神经网络(2D-CNN)学习随信噪比(SNR)增加的PRM;其次,通过传统的帧级语音增强算法组合句子级估计的PRM,进行语音增强;最后,将基于多级别信息融合的增强语音直接作为语音识别系统的输入,从而提高识别系统性能。在CHiME-4真实测试集上的实验结果表明,所提方法可以实现7.42%的相对字识别错误率(WER),与IMCRA语音增强方法相比下降了51.41%,可见所提方法能够有效提升下游识别任务的性能。 展开更多
关键词 语音增强 深度学习 渐进比率掩蔽 语音识别 CHiME-4比赛
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部