With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of a...With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of aircraft key structure. In this work, a 3 D finite element model was established to predict tensile performance and failure modes of single-lap, single-bolt 2 D C/SiC composite, and superalloy joint, which considers the progressive damage behavior of 2 D woven C/SiC composites. On the basis of the developed progressive damage model, a parametric study was carried out to illustrate the effects of bolt preload and bolt-hole clearance on mechanical behaviors of the hybrid bolted joint. It was found that the increase in the value of bolt preload made the failure load grow first and then drop, and the optimum value of bolt preload 5.00 kN generated 56.47% rise in the initial failure load and 22.83% rise in the final failure load for the bolted joint in comparison with zero preload case. As the clearance increased from 0 to 2.00%, the initial and final failure loads respectively declined by 45.88% and 24.02% for 2.00% bolt-hole clearance relative to the neat-fit case. The loss in failure loads can be reduced to compressive stress concentration around the fastening hole-edge area, leading to the appearance of earlier damages by the introduction of increasing bolt hole clearance.展开更多
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio...Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.展开更多
Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive dam...Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive damage analysis of 2D C/SiC composites and superalloy bolted joint was implemented to simulate the uniaxial tensile loading process by using the ABAQUS finite element software.The parametric effects of raised head bolt on stress distribution,tensile performance,and damage process were studied for the CMC⁃superalloy bolted joint structures.The results showed that the final failure load increased first to the maximum value,and then decreased with the rise of bolt diameter,bolt head diameter,and bolt head thickness,respectively.When the three parameters were 5.0 mm,9.5 mm,and 2.8 mm for the current studied bolt configuration,the joint structure gave the maximum load bearing capacity for the considered parameter ranges.It was also found that around 42%potential improvement in load bearing capacity could be achieved by very small adjustments in bolt parameters of the joints.展开更多
基金Sponsored by the Pre-Research Foundation of Shenyang Aircraft Design and Research Institute,the Aviation Industry Corporation of China(Grant No.JH20128255)the National Defence Basic Research Program(Grant No.JZ20180032)the Pre-Research Foundation of Equipment Development Department of People’s Republic of China Central Military Commission(Grant No.ZJJSN20200001)。
文摘With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of aircraft key structure. In this work, a 3 D finite element model was established to predict tensile performance and failure modes of single-lap, single-bolt 2 D C/SiC composite, and superalloy joint, which considers the progressive damage behavior of 2 D woven C/SiC composites. On the basis of the developed progressive damage model, a parametric study was carried out to illustrate the effects of bolt preload and bolt-hole clearance on mechanical behaviors of the hybrid bolted joint. It was found that the increase in the value of bolt preload made the failure load grow first and then drop, and the optimum value of bolt preload 5.00 kN generated 56.47% rise in the initial failure load and 22.83% rise in the final failure load for the bolted joint in comparison with zero preload case. As the clearance increased from 0 to 2.00%, the initial and final failure loads respectively declined by 45.88% and 24.02% for 2.00% bolt-hole clearance relative to the neat-fit case. The loss in failure loads can be reduced to compressive stress concentration around the fastening hole-edge area, leading to the appearance of earlier damages by the introduction of increasing bolt hole clearance.
基金the Science and Technology Programs of Gansu Province(Grant Nos.21JR1RA248,23YFGA0050)the Young Scholars Science Foundation of Lanzhou Jiaotong University(Grant Nos.2020039,2020017)+2 种基金the Special Funds for Guiding Local Scientific and Technological Development by the Central Government(Grant No.22ZY1QA005)the National Natural Science Foundation of China(Grant No.72361019)the Gansu Provincial Outstanding Graduate Students Innovation Star Program(Grant No.2023CXZX-574).
文摘Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.
基金Sponsored by the Pre⁃Research Foundation of Shenyang Aircraft Design and Research Institute,Aviation Industry Corporation of China(Grant No.JH20128255).
文摘Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive damage analysis of 2D C/SiC composites and superalloy bolted joint was implemented to simulate the uniaxial tensile loading process by using the ABAQUS finite element software.The parametric effects of raised head bolt on stress distribution,tensile performance,and damage process were studied for the CMC⁃superalloy bolted joint structures.The results showed that the final failure load increased first to the maximum value,and then decreased with the rise of bolt diameter,bolt head diameter,and bolt head thickness,respectively.When the three parameters were 5.0 mm,9.5 mm,and 2.8 mm for the current studied bolt configuration,the joint structure gave the maximum load bearing capacity for the considered parameter ranges.It was also found that around 42%potential improvement in load bearing capacity could be achieved by very small adjustments in bolt parameters of the joints.