American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired perso...American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons,because sign language is their only channel of expression.Representative ASL recognition methods primarily adopt images,sensors,and pose-based recognition techniques,and employ various gestures together with hand-shapes.This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers.In the proposed model,the collected ASL images were clustered based on similarities in shape,and clustered group classification was first performed,followed by reclassification within the group.The experiments were conducted with various groups using different learning layers to improve the accuracy of individual image recognition.After selecting the optimized group,we proposed a meta-layered learning model with the highest recognition rate using a deep learning method of image processing.The proposed model exhibited an improved performance compared with the general classification model.展开更多
In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization...In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization of nodes in real time wireless networks helps to improve the overall functioning of networks.This study presents an Improved Metaheuristics based Energy Efficient Clustering with Node Localization(IM-EECNL)approach for real-time wireless networks.The proposed IM-EECNL technique involves two major processes namely node localization and clustering.Firstly,Chaotic Water Strider Algorithm based Node Localization(CWSANL)technique to determine the unknown position of the nodes.Secondly,an Oppositional Archimedes Optimization Algorithm based Clustering(OAOAC)technique is applied to accomplish energy efficiency in the network.Besides,the OAOAC technique derives afitness function comprising residual energy,distance to cluster heads(CHs),distance to base station(BS),and load.The performance validation of the IM-EECNL technique is carried out under several aspects such as localization and energy efficiency.A wide ranging comparative outcomes analysis highlighted the improved performance of the IM-EECNL approach on the recent approaches with the maximum packet delivery ratio(PDR)of 0.985.展开更多
In the Internet of Things(IoT)based system,the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems(...In the Internet of Things(IoT)based system,the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems(UCS).The UCS necessitates heterogeneity,management level,and data transmission for distributed users.Simultaneously,security remains a major issue in the IoT-driven UCS.Besides,energy-limited IoT devices need an effective clustering strategy for optimal energy utilization.The recent developments of explainable artificial intelligence(XAI)concepts can be employed to effectively design intrusion detection systems(IDS)for accomplishing security in UCS.In this view,this study designs a novel Blockchain with Explainable Artificial Intelligence Driven Intrusion Detection for IoT Driven Ubiquitous Computing System(BXAI-IDCUCS)model.The major intention of the BXAI-IDCUCS model is to accomplish energy efficacy and security in the IoT environment.The BXAI-IDCUCS model initially clusters the IoT nodes using an energy-aware duck swarm optimization(EADSO)algorithm to accomplish this.Besides,deep neural network(DNN)is employed for detecting and classifying intrusions in the IoT network.Lastly,blockchain technology is exploited for secure inter-cluster data transmission processes.To ensure the productive performance of the BXAI-IDCUCS model,a comprehensive experimentation study is applied,and the outcomes are assessed under different aspects.The comparison study emphasized the superiority of the BXAI-IDCUCS model over the current state-of-the-art approaches with a packet delivery ratio of 99.29%,a packet loss rate of 0.71%,a throughput of 92.95 Mbps,energy consumption of 0.0891 mJ,a lifetime of 3529 rounds,and accuracy of 99.38%.展开更多
The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role...The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role in network administration in the future generation of VANET withfifth generation(5G)networks.Regardless of the benefits of VANET,energy economy and traffic control are significant architectural challenges.Accurate and real-time trafficflow prediction(TFP)becomes critical for managing traffic effectively in the VANET.SDN controllers are a critical issue in VANET,which has garnered much interest in recent years.With this objective,this study develops the SDNTFP-C technique,a revolutionary SDN controller-based real-time trafficflow forecasting technique for clustered VANETs.The proposed SDNTFP-C technique combines the SDN controller’s scalability,flexibility,and adaptability with deep learning(DL)mod-els.Additionally,a novel arithmetic optimization-based clustering technique(AOCA)is developed to cluster automobiles in a VANET.The TFP procedure is then performed using a hybrid convolutional neural network model with atten-tion-based bidirectional long short-term memory(HCNN-ABLSTM).To optimise the performance of the HCNN-ABLSTM model,the dingo optimization techni-que was used to tune the hyperparameters(DOA).The experimental results ana-lysis reveals that the suggested method outperforms other current techniques on a variety of evaluation metrics.展开更多
Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can pro...Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.展开更多
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
We study the structural and dynamical properties of A209 based on Chandra and XMM-Newton observations.We obtain detailed temperature,pressure,and entropy maps with the contour binning method,and find a hot region in t...We study the structural and dynamical properties of A209 based on Chandra and XMM-Newton observations.We obtain detailed temperature,pressure,and entropy maps with the contour binning method,and find a hot region in the NW direction.The X-ray brightness residual map and corresponding temperature profiles reveal a possible shock front in the NW direction and a cold front feature in the SE direction.Combined with the galaxy luminosity density map we propose a weak merger scenario.A young sub-cluster passing from the SE to NW direction could explain the optical subpeak,the intracluster medium temperature map,the X-ray surface brightness excess,and the X-ray peak offset together.展开更多
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared...In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.展开更多
In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world da...In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.展开更多
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ...Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.展开更多
Dear Editor,This letter focuses on the fixed-time(FXT)cluster optimization problem of first-order multi-agent systems(FOMASs)in an undirected network,in which the optimization objective is the sum of the objective fun...Dear Editor,This letter focuses on the fixed-time(FXT)cluster optimization problem of first-order multi-agent systems(FOMASs)in an undirected network,in which the optimization objective is the sum of the objective functions of all clusters.A novel piecewise power-law control protocol with cooperative-competition relations is proposed.Furthermore,a sufficient condition is obtained to ensure that the FOMASs achieve the cluster consensus within an FXT.展开更多
Path-based clustering algorithms typically generate clusters by optimizing a benchmark function.Most optimiza-tion methods in clustering algorithms often offer solutions close to the general optimal value.This study a...Path-based clustering algorithms typically generate clusters by optimizing a benchmark function.Most optimiza-tion methods in clustering algorithms often offer solutions close to the general optimal value.This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance,Maximum Spanning Tree“MST”,and meta-heuristic algorithms,including Genetic Algorithm“GA”and Particle Swarm Optimization“PSO”.The Fast Path-based Clustering“FPC”algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations.The FPC does this operation using MST,the minimax distance,and a new hybrid meta-heuristic algorithm in a few rounds of algorithm iterations.This algorithm can achieve the global optimal value,and the main clustering process of the algorithm has a computational complexity of O�k2×n�.However,due to the complexity of the minimum distance algorithm,the total computational complexity is O�n2�.Experimental results of FPC on synthetic datasets with arbitrary shapes demonstrate that the algorithm is resistant to noise and outliers and can correctly identify clusters of varying sizes and numbers.In addition,the FPC requires the number of clusters as the only parameter to perform the clustering process.A comparative analysis of FPC and other clustering algorithms in this domain indicates that FPC exhibits superior speed,stability,and performance.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of ...Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.展开更多
Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims...Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy...Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81.展开更多
基金This research was supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(NRF-2019R1A2C1084308).
文摘American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons,because sign language is their only channel of expression.Representative ASL recognition methods primarily adopt images,sensors,and pose-based recognition techniques,and employ various gestures together with hand-shapes.This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers.In the proposed model,the collected ASL images were clustered based on similarities in shape,and clustered group classification was first performed,followed by reclassification within the group.The experiments were conducted with various groups using different learning layers to improve the accuracy of individual image recognition.After selecting the optimized group,we proposed a meta-layered learning model with the highest recognition rate using a deep learning method of image processing.The proposed model exhibited an improved performance compared with the general classification model.
基金supported by Ulsan Metropolitan City-ETRI joint cooperation project[21AS1600,Development of intelligent technology for key industriesautonomous human-mobile-space autonomous collaboration intelligence technology].
文摘In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization of nodes in real time wireless networks helps to improve the overall functioning of networks.This study presents an Improved Metaheuristics based Energy Efficient Clustering with Node Localization(IM-EECNL)approach for real-time wireless networks.The proposed IM-EECNL technique involves two major processes namely node localization and clustering.Firstly,Chaotic Water Strider Algorithm based Node Localization(CWSANL)technique to determine the unknown position of the nodes.Secondly,an Oppositional Archimedes Optimization Algorithm based Clustering(OAOAC)technique is applied to accomplish energy efficiency in the network.Besides,the OAOAC technique derives afitness function comprising residual energy,distance to cluster heads(CHs),distance to base station(BS),and load.The performance validation of the IM-EECNL technique is carried out under several aspects such as localization and energy efficiency.A wide ranging comparative outcomes analysis highlighted the improved performance of the IM-EECNL approach on the recent approaches with the maximum packet delivery ratio(PDR)of 0.985.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:624-611-1443)。
文摘In the Internet of Things(IoT)based system,the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems(UCS).The UCS necessitates heterogeneity,management level,and data transmission for distributed users.Simultaneously,security remains a major issue in the IoT-driven UCS.Besides,energy-limited IoT devices need an effective clustering strategy for optimal energy utilization.The recent developments of explainable artificial intelligence(XAI)concepts can be employed to effectively design intrusion detection systems(IDS)for accomplishing security in UCS.In this view,this study designs a novel Blockchain with Explainable Artificial Intelligence Driven Intrusion Detection for IoT Driven Ubiquitous Computing System(BXAI-IDCUCS)model.The major intention of the BXAI-IDCUCS model is to accomplish energy efficacy and security in the IoT environment.The BXAI-IDCUCS model initially clusters the IoT nodes using an energy-aware duck swarm optimization(EADSO)algorithm to accomplish this.Besides,deep neural network(DNN)is employed for detecting and classifying intrusions in the IoT network.Lastly,blockchain technology is exploited for secure inter-cluster data transmission processes.To ensure the productive performance of the BXAI-IDCUCS model,a comprehensive experimentation study is applied,and the outcomes are assessed under different aspects.The comparison study emphasized the superiority of the BXAI-IDCUCS model over the current state-of-the-art approaches with a packet delivery ratio of 99.29%,a packet loss rate of 0.71%,a throughput of 92.95 Mbps,energy consumption of 0.0891 mJ,a lifetime of 3529 rounds,and accuracy of 99.38%.
文摘The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role in network administration in the future generation of VANET withfifth generation(5G)networks.Regardless of the benefits of VANET,energy economy and traffic control are significant architectural challenges.Accurate and real-time trafficflow prediction(TFP)becomes critical for managing traffic effectively in the VANET.SDN controllers are a critical issue in VANET,which has garnered much interest in recent years.With this objective,this study develops the SDNTFP-C technique,a revolutionary SDN controller-based real-time trafficflow forecasting technique for clustered VANETs.The proposed SDNTFP-C technique combines the SDN controller’s scalability,flexibility,and adaptability with deep learning(DL)mod-els.Additionally,a novel arithmetic optimization-based clustering technique(AOCA)is developed to cluster automobiles in a VANET.The TFP procedure is then performed using a hybrid convolutional neural network model with atten-tion-based bidirectional long short-term memory(HCNN-ABLSTM).To optimise the performance of the HCNN-ABLSTM model,the dingo optimization techni-que was used to tune the hyperparameters(DOA).The experimental results ana-lysis reveals that the suggested method outperforms other current techniques on a variety of evaluation metrics.
文摘Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
基金supported by the National Natural Science Foundation of China(grant Nos.U2038104 and 11703014)the Bureau of International Cooperation,Chinese Academy of Sciences(GJHZ1864)。
文摘We study the structural and dynamical properties of A209 based on Chandra and XMM-Newton observations.We obtain detailed temperature,pressure,and entropy maps with the contour binning method,and find a hot region in the NW direction.The X-ray brightness residual map and corresponding temperature profiles reveal a possible shock front in the NW direction and a cold front feature in the SE direction.Combined with the galaxy luminosity density map we propose a weak merger scenario.A young sub-cluster passing from the SE to NW direction could explain the optical subpeak,the intracluster medium temperature map,the X-ray surface brightness excess,and the X-ray peak offset together.
基金This work was supported by Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300502,KJQN201800539).
文摘In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.
基金supported in part by the National Natural Science Foundation of China under Grant 62171203in part by the Jiangsu Province“333 Project”High-Level Talent Cultivation Subsidized Project+2 种基金in part by the SuzhouKey Supporting Subjects for Health Informatics under Grant SZFCXK202147in part by the Changshu Science and Technology Program under Grants CS202015 and CS202246in part by Changshu Key Laboratory of Medical Artificial Intelligence and Big Data under Grants CYZ202301 and CS202314.
文摘In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.
基金supported by the National Key Research and Development Program of China(No.2022YFB3304400)the National Natural Science Foundation of China(Nos.6230311,62303111,62076060,61932007,and 62176083)the Key Research and Development Program of Jiangsu Province of China(No.BE2022157).
文摘Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.
基金supported in part by the National Natural Science Foundation of China(62373231,61973201)the Fundamental Research Program of Shanxi Province(202203021211297)Shanxi Scholarship Council of China(2023-002)。
文摘Dear Editor,This letter focuses on the fixed-time(FXT)cluster optimization problem of first-order multi-agent systems(FOMASs)in an undirected network,in which the optimization objective is the sum of the objective functions of all clusters.A novel piecewise power-law control protocol with cooperative-competition relations is proposed.Furthermore,a sufficient condition is obtained to ensure that the FOMASs achieve the cluster consensus within an FXT.
文摘Path-based clustering algorithms typically generate clusters by optimizing a benchmark function.Most optimiza-tion methods in clustering algorithms often offer solutions close to the general optimal value.This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance,Maximum Spanning Tree“MST”,and meta-heuristic algorithms,including Genetic Algorithm“GA”and Particle Swarm Optimization“PSO”.The Fast Path-based Clustering“FPC”algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations.The FPC does this operation using MST,the minimax distance,and a new hybrid meta-heuristic algorithm in a few rounds of algorithm iterations.This algorithm can achieve the global optimal value,and the main clustering process of the algorithm has a computational complexity of O�k2×n�.However,due to the complexity of the minimum distance algorithm,the total computational complexity is O�n2�.Experimental results of FPC on synthetic datasets with arbitrary shapes demonstrate that the algorithm is resistant to noise and outliers and can correctly identify clusters of varying sizes and numbers.In addition,the FPC requires the number of clusters as the only parameter to perform the clustering process.A comparative analysis of FPC and other clustering algorithms in this domain indicates that FPC exhibits superior speed,stability,and performance.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
基金supported by the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+3 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211)Innovative Research Project for Graduate Students in Hainan Province(Grant Nos.Qhys2023-96,Qhys2023-95).
文摘Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.
基金This research was funded by the National Natural Science Foundation of China(Grant No.72001190)by the Ministry of Education’s Humanities and Social Science Project via the China Ministry of Education(Grant No.20YJC630173)by Zhejiang A&F University(Grant No.2022LFR062).
文摘Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金Yulin Science and Technology Bureau production Project“Research on Smart Agricultural Product Traceability System”(No.CXY-2022-64)Light of West China(No.XAB2022YN10)+1 种基金The China Postdoctoral Science Foundation(No.2023M740760)Shaanxi Province Key Research and Development Plan(No.2024SF-YBXM-678).
文摘Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81.