In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the ...For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.展开更多
A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the v...A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.展开更多
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We the...In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. ...A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. The results show that the two methods have the same velocity and pressure values except slight differences in the CPU time.展开更多
In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of th...In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of the line search procedure with fixed stepsize. For the new method, we first show its global convergence under the condition that the solution set is nonempty, and then establish its linear convergence rate. Preliminary numerical experiments show that this method has good performance.展开更多
In this paper,we consider a new algorithm for a generalized system for relaxed coercive nonlinear inequalities involving three different operators in Hilbert spaces by the convergence of projection methods.Our results...In this paper,we consider a new algorithm for a generalized system for relaxed coercive nonlinear inequalities involving three different operators in Hilbert spaces by the convergence of projection methods.Our results include the previous results as special cases extend and improve the main results obtained by many others.展开更多
In this paper,a three-term derivative-free projection method is proposed for solving nonlinear monotone equations.Under someappropriate conditions,the global convergence and R-linear convergence rate of the proposed m...In this paper,a three-term derivative-free projection method is proposed for solving nonlinear monotone equations.Under someappropriate conditions,the global convergence and R-linear convergence rate of the proposed method are analyzed and proved.With no need of any derivative information,the proposed method is able to solve large-scale nonlinear monotone equations.Numerical comparisons show that the proposed method is effective.展开更多
This paper deals with a class of inertial gradient projection methods for solving a vari-ational inequality problem involving pseudomonotone and non-Lipschitz mappings in Hilbert spaces.The proposed algorithm incorpor...This paper deals with a class of inertial gradient projection methods for solving a vari-ational inequality problem involving pseudomonotone and non-Lipschitz mappings in Hilbert spaces.The proposed algorithm incorporates inertial techniques and the projection and contraction method.The weak convergence is proved without the condition of the Lipschitz continuity of the mappings.Meanwhile,the linear convergence of the algorithm is established under strong pseudomonotonicity and Lipschitz continuity assumptions.The main results obtained in this paper extend and improve some related works in the literature.展开更多
In this paper,a new type of stabilized finite element method is discussed for Oseen equations based on the local L^(2)projection stabilized technique for the velocity field.Velocity and pressure are approximated by tw...In this paper,a new type of stabilized finite element method is discussed for Oseen equations based on the local L^(2)projection stabilized technique for the velocity field.Velocity and pressure are approximated by two kinds of mixed finite element spaces,P^(2)_( l)-P_(1),(l=1,2).A main advantage of the proposed method lies in that,all the computations are performed at the same element level,without the need of nested meshes or the projection of the gradient of velocity onto a coarse level.Stability and convergence are proved for two kinds of stabilized schemes.Numerical experiments confirm the theoretical results.展开更多
In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement i...In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.展开更多
The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor form...The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor format,which needs less flops and storage than the standard projection method.The structure of the coefficient matrices of the tensor equation is used to design the nearest Kronecker product(NKP) preconditioner,which is easy to construct and is able to accelerate the convergence of the iterative solver.Numerical experiments are presented to show good performance of the approaches.展开更多
The purpose of this article is to propose a shrinking projection method and prove a strong convergence theorem for a family of quasi-φ-strict asymptotically pseudo-contractions. Its results hold in reflexive, strictl...The purpose of this article is to propose a shrinking projection method and prove a strong convergence theorem for a family of quasi-φ-strict asymptotically pseudo-contractions. Its results hold in reflexive, strictly convex, smooth Banach spaces with the property (K). The results of this paper improve and extend the results of Matsushita and Takahashi, Marino and Xu, Zhou and Gao and others.展开更多
In the paper a linear combination of both the standard mixed formulation and the displacement one of the Reissner-Mindlin plate theory is used to enhance stability of the former and to remove ''locking'...In the paper a linear combination of both the standard mixed formulation and the displacement one of the Reissner-Mindlin plate theory is used to enhance stability of the former and to remove ''locking'' of the later. For this new stabilized formulation, a unified approach to convergence analysis is presented for a wide spectrum of finite element spaces. As long as the rotation space is appropriately enriched, the formulation is convergent for the finite element spaces of sufficiently high order. Optimal-order error estimates with constants independent of the plate thickness are proved for the various lower order methods of this kind.展开更多
In this paper, we propose a spectral DY-type projection method for nonlinear mono- tone system of equations, which is a reasonable combination of DY conjugate gradient method, the spectral gradient method and the proj...In this paper, we propose a spectral DY-type projection method for nonlinear mono- tone system of equations, which is a reasonable combination of DY conjugate gradient method, the spectral gradient method and the projection technique. Without the differen- tiability assumption on the system of equations, we establish the global convergence of the proposed method, which does not rely on any merit function. Furthermore, this method is derivative-free and so is very suitable to solve large-scale nonlinear monotone systems. The preliminary numerical results show the feasibility and effectiveness of the proposed method.展开更多
In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective functi...In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective function is convex and its gradient is Lipschitz continuous, then the whole sequence of iterations produced by this method with bounded exact stepsizes converges to a solution of the concerned problem.展开更多
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
基金supported by the National Natural Science Foundation of China(7107307971222106+2 种基金70901069)the Research Foundation of the National Excellent Doctoral Dissertation of Chinathe Research Fund for the Doctoral Program of Higher Education(20133402110028)
文摘For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.
基金supported by the National Natural Science Foundation of China (Nos. 10971203 and 11271340)the Research Fund for the Doctoral Program of Higher Education of China (No. 20094101110006)
文摘A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.
基金The project supported by the China NKBRSF(2001CB409604)
文摘In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金Project supported by the National Natural Science Foundation of China (No. 50876114)
文摘A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. The results show that the two methods have the same velocity and pressure values except slight differences in the CPU time.
基金supported by National Natural Science Foundation of China (No. 10771120)Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of the line search procedure with fixed stepsize. For the new method, we first show its global convergence under the condition that the solution set is nonempty, and then establish its linear convergence rate. Preliminary numerical experiments show that this method has good performance.
基金Supported by the NSF of Henan Province(092300410150)Supported by the NSF of Department Education of Henan Province(2009C110002)Supported by the Key Teacher Foundation of Huanghuai University
文摘In this paper,we consider a new algorithm for a generalized system for relaxed coercive nonlinear inequalities involving three different operators in Hilbert spaces by the convergence of projection methods.Our results include the previous results as special cases extend and improve the main results obtained by many others.
文摘In this paper,a three-term derivative-free projection method is proposed for solving nonlinear monotone equations.Under someappropriate conditions,the global convergence and R-linear convergence rate of the proposed method are analyzed and proved.With no need of any derivative information,the proposed method is able to solve large-scale nonlinear monotone equations.Numerical comparisons show that the proposed method is effective.
文摘This paper deals with a class of inertial gradient projection methods for solving a vari-ational inequality problem involving pseudomonotone and non-Lipschitz mappings in Hilbert spaces.The proposed algorithm incorporates inertial techniques and the projection and contraction method.The weak convergence is proved without the condition of the Lipschitz continuity of the mappings.Meanwhile,the linear convergence of the algorithm is established under strong pseudomonotonicity and Lipschitz continuity assumptions.The main results obtained in this paper extend and improve some related works in the literature.
基金This work is supported by NSF of China(Nos.11071184,11271273,11371275,41674141)NSF of Shanxi Province(No.2012011015-6)+3 种基金STIP of Higher Education Institutions in Shanxi(No.20111121)Young Scholars Development Fund of SWPU(No.201599010041)Young Science and Technology Innovation Team of SWPU(No.2015CXTD07)Key Program of SiChuan Provincial Department of Education(No.16ZA0066).
文摘In this paper,a new type of stabilized finite element method is discussed for Oseen equations based on the local L^(2)projection stabilized technique for the velocity field.Velocity and pressure are approximated by two kinds of mixed finite element spaces,P^(2)_( l)-P_(1),(l=1,2).A main advantage of the proposed method lies in that,all the computations are performed at the same element level,without the need of nested meshes or the projection of the gradient of velocity onto a coarse level.Stability and convergence are proved for two kinds of stabilized schemes.Numerical experiments confirm the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.10771134).
文摘In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.
基金supported by National Natural Science Foundation of China (Grant No.10961010)Science and Technology Foundation of Guizhou Province (Grant No. LKS[2009]03)
文摘The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor format,which needs less flops and storage than the standard projection method.The structure of the coefficient matrices of the tensor equation is used to design the nearest Kronecker product(NKP) preconditioner,which is easy to construct and is able to accelerate the convergence of the iterative solver.Numerical experiments are presented to show good performance of the approaches.
基金Supported by the National Natural Science Foundation of China (Grant No.10771050)the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No.11JK0486)
文摘The purpose of this article is to propose a shrinking projection method and prove a strong convergence theorem for a family of quasi-φ-strict asymptotically pseudo-contractions. Its results hold in reflexive, strictly convex, smooth Banach spaces with the property (K). The results of this paper improve and extend the results of Matsushita and Takahashi, Marino and Xu, Zhou and Gao and others.
文摘In the paper a linear combination of both the standard mixed formulation and the displacement one of the Reissner-Mindlin plate theory is used to enhance stability of the former and to remove ''locking'' of the later. For this new stabilized formulation, a unified approach to convergence analysis is presented for a wide spectrum of finite element spaces. As long as the rotation space is appropriately enriched, the formulation is convergent for the finite element spaces of sufficiently high order. Optimal-order error estimates with constants independent of the plate thickness are proved for the various lower order methods of this kind.
文摘In this paper, we propose a spectral DY-type projection method for nonlinear mono- tone system of equations, which is a reasonable combination of DY conjugate gradient method, the spectral gradient method and the projection technique. Without the differen- tiability assumption on the system of equations, we establish the global convergence of the proposed method, which does not rely on any merit function. Furthermore, this method is derivative-free and so is very suitable to solve large-scale nonlinear monotone systems. The preliminary numerical results show the feasibility and effectiveness of the proposed method.
基金The research was in part supported by the National Natural Science Foundation of China (70471002,10571106) NCET040098.
文摘In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective function is convex and its gradient is Lipschitz continuous, then the whole sequence of iterations produced by this method with bounded exact stepsizes converges to a solution of the concerned problem.