期刊文献+
共找到70,239篇文章
< 1 2 250 >
每页显示 20 50 100
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton 被引量:1
1
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
下载PDF
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:1
2
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
Silencing of peroxiredoxin 2 suppresses proliferation and Wnt/β-catenin pathway,and induces senescence in hepatocellular carcinoma 被引量:1
3
作者 XUEGANG YANG XIANHONG XIANG +3 位作者 GUOHUI XU SHI ZHOU TIANZHI AN ZHI HUANG 《Oncology Research》 SCIE 2024年第1期213-226,共14页
Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our... Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells. 展开更多
关键词 Peroxiredoxin 2 Hepatocellular carcinoma Wnt/β-catenin pathway SENESCENCE proliferation
下载PDF
Alleviated photoinhibition on nitrification in the Indian Sector of the Southern Ocean 被引量:1
4
作者 Lingfang Fan Min Chen +2 位作者 Zifei Yang Minfang Zheng Yusheng Qiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期52-69,共18页
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the... Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%. 展开更多
关键词 NITRIFICATION light inhibition substrate affinity circumpolar deep water(CDW)upwelling the Southern Ocean
下载PDF
High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke 被引量:3
5
作者 Jing Luo Yuan Feng +4 位作者 Zhongqiu Hong Mingyu Yin Haiqing Zheng Liying Zhang Xiquan Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1772-1780,共9页
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ... Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells. 展开更多
关键词 AKT/β-catenin signaling brain stimulation Ca2+influx cell proliferation ischemic stroke middle cerebral artery occlusion neural stem cells neurological rehabilitation repetitive transcranial magnetic stimulation
下载PDF
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways 被引量:1
6
作者 Sen Zeng Honglan Yang +8 位作者 Binghao Wang Yongzhi Xie Ke Xu Lei Liu Wanqian Cao Xionghao Liu Beisha Tang Mujun Liu Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期205-211,共7页
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus... Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction. 展开更多
关键词 antisense oligonucleotides cell cycle arrest Charcot-Marie-Tooth disease 2Z induced pluripotent stem cells MAPK/ERK PI3K/Akt proliferation spinal muscular atrophy-like
下载PDF
TM9SF1 is implicated in promoting the proliferation and invasion of bladder cancer cells
7
作者 Shu-Qing Zhou Lian-Xiang Luo 《World Journal of Clinical Oncology》 2024年第2期175-177,共3页
Zhuo et al looked into the part of transmembrane 9 superfamily member 1(TM9SF1)in bladder cancer(BC),and evaluated if it can be used as a therapeutic target.They created a permanent BC cell line and tested the effects... Zhuo et al looked into the part of transmembrane 9 superfamily member 1(TM9SF1)in bladder cancer(BC),and evaluated if it can be used as a therapeutic target.They created a permanent BC cell line and tested the effects of TM9SF1 overexpression and suppression on BC cell growth,movement,invasion,and cell cycle advancement.Their results show that TM9SF1 can boost the growth,movement,and invasion of BC cells and their access into the G2/M stage of the cell cycle.This research gives a novel direction and concept for targeted therapy of BC. 展开更多
关键词 Bladder cancer TM9SF1 Cell proliferation Migration INVASION TM9SF1 overexpression TM9SF1 silencing inhibits
下载PDF
UCHL1 promotes the proliferation of porcine granulosa cells by stabilizing CCNB1
8
作者 Shengjie Shi Huan Yuan +6 位作者 Lutong Zhang Lei Gao Lili Zhao Xiangfang Zeng Shiyan Qiao Guiyan Chu Chuanjiang Cai 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期1894-1907,共14页
Background The proliferation of porcine ovarian granulosa cells(GCs)is essential to follicular development and the ubiquitin–proteasome system is necessary for maintaining cell cycle homeostasis.Previous studies foun... Background The proliferation of porcine ovarian granulosa cells(GCs)is essential to follicular development and the ubiquitin–proteasome system is necessary for maintaining cell cycle homeostasis.Previous studies found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1(UCHL1)regulates female reproduction,especially in ovarian development.However,the mechanism by which UCHL1 regulates porcine GC proliferation remains unclear.Results UCHL1 overexpression promoted GC proliferation,and knockdown had the opposite effect.UCHL1 is directly bound to cyclin B1(CCNB1),prolonging the half-life of CCNB1 and inhibiting its degradation,thereby promoting GC proliferation.What's more,a flavonoid compound-isovitexin improved the enzyme activity of UCHL1 and promoted the proliferation of porcine GCs.Conclusions UCHL1 promoted the proliferation of porcine GCs by stabilizing CCNB1,and isovitexin enhanced the enzyme activity of UCHL1.These findings reveal the role of UCHL1 and the potential of isovitexin in regulating proliferation and provide insights into identifying molecular markers and nutrients that affect follicle development. 展开更多
关键词 CCNB1 Granulosa cells Isovitexin proliferation UCHL1
下载PDF
Resveratrol inhibits pancreatic cancer proliferation and metastasis by depleting senescent tumor-associated fibroblasts
9
作者 He Jiang Guo-Tai Wang +2 位作者 Zheng Wang Qing-Yong Ma Zhen-Hua Ma 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3980-3993,共14页
BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogen... BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogenesis of pancreatic cancer is well recognized,recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts.However,their precise role in pancreatic cancer remains unknown.Resveratrol is a natural polyphenol known for its multifaceted biological actions,including antioxidative and neuroprotective properties,as well as its potential to inhibit tumor proliferation and migration.Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis.AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts.METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression ofα-SMA and p16.HP-1 expression was determined using immunohistochemistry.Cells were treated with the senescence-inducing factors known as 3CKs.Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate.Western blotting was conducted to assess the expression levels of p16 and p21.Immunofluorescence was performed to assess LaminB1 expression.Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors,including IL-4,IL-6,IL-8,IL-13,MMP-2,MMP-9,CXCL1,and CXCL12.A scratch assay was used to assess the migratory capacity of the cells,whereas Transwell assays were used to evaluate their invasive potential.RESULTS Specifically,we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues,linking their abundance to cancer progression.Intriguingly,Resveratrol effectively eradicated these fibroblasts and hindered their senescence,which consequently impeded pancreatic cancer progression.CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer. 展开更多
关键词 RESVERATROL Pancreatic Cancer proliferation METASTASIS Senescent FIBROBLASTS
下载PDF
Hapln1 promotes dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping
10
作者 Ding-Jun Hao Yue Qin +5 位作者 Shi-Jie Zhou Bu-Huai Dong Jun-Song Yang Peng Zou Li-Ping Wang Yuan-Ting Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期335-347,共13页
Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hap... Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts. 展开更多
关键词 Hapln1 VERSICAN GDF11 iPSC-CMs Cardiomyocyte proliferation
下载PDF
Prox1 Suppresses Proliferation and Drug Resistance of Retinoblastoma Cells via Targeting Notch1
11
作者 Hong-li ZHANG Na LI +2 位作者 Lin DONG Hong-xia MA Mo-chi YANG 《Current Medical Science》 SCIE CAS 2024年第1期223-231,共9页
Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,h... Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB. 展开更多
关键词 Proxl NOTCH1 retinoblastoma cells proliferation drug resistance
下载PDF
Role of hsa_circ_0007482 in pterygium development: insights into proliferation, apoptosis, and clinical correlations
12
作者 Li-Yun Zhang Xin Liu +7 位作者 Shuo Zheng Wen-Qun Xi Xue-Ping Wu Dan-Yao Nie Hui-Ling Hu Jian-Tao Wang Xin-Hua Liu Jing Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1387-1395,共9页
AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjuncti... AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjunctival tissues were collected from the superior area of the same patient’s eye(n=33).The correlation between pterygium severity and hsa_circ_0007482 expression using quantitative reversetranscription polymerase chain reaction(RT-qPCR)were analyzed.Three distinct siRNA sequences targeting hsa_circ_0007482,along with a negative control sequence,were transfected into HPFs.Cell proliferation was assessed using the cell counting kit-8.Expression levels of Ki67,proliferating cell nuclear antigen(PCNA),Cyclin D1,Bax,B-cell lymphoma-2(Bcl-2),and Caspase-3 were measured via RT-qPCR.Immunofluorescence staining was employed to detect Ki67 and vimentin expressions.Apoptosis was evaluated using flow cytometry.RESULTS:Hsa_circ_0007482 expression was significantly higher in pterygium tissues compared to normal conjunctival tissues(P<0.001).Positive correlations were observed between hsa_circ_0007482 expression and pterygium severity,thickness,and vascular density.Knockdown of hsa_circ_0007482 inhibited cell proliferation,reducing the mRNA expression of Ki67,PCNA,and Cyclin D1 in HPFs.Hsa_circ_0007482 knockdown induced apoptosis,increasing mRNA expression levels of Bax and Caspase-3,while decreasing Bcl-2 expression in HPFs.Additionally,hsa_circ_0007482 knockdown attenuated vimentin expression in HPFs.CONCLUSION:The downregulation of hsa_circ_0007482 effectively hampers cell proliferation and triggers apoptosis in HPFs.There are discernible positive correlations detected between the expression of hsa_circ_0007482 and the severity of pterygium. 展开更多
关键词 hsa_circ_0007482 circular RNA PTERYGIUM cell proliferation APOPTOSIS
下载PDF
miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27
13
作者 Shengjie Shi Lutong Zhang +7 位作者 Liguang Wang Huan Yuan Haowei Sun Mielie Madaniyati Chuanjiang Cai Weijun Pang Lei Gao Guiyan Chu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1315-1328,共14页
Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra... Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs. 展开更多
关键词 miR-24-3p granulosa cells proliferation APOPTOSIS
下载PDF
Sm-like 5 knockdown inhibits proliferation and promotes apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B
14
作者 Cai-Jing Mo Xiao-Yuan Deng +3 位作者 Ru-Lan Ma Kun Zhu Lei Shi Kang Li 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2716-2726,共11页
BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determ... BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis.Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins.A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression.Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells.Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells.A high expression level of LSM5 was related to poor prognosis in patients with colon cancer.Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells.Silencing of LSM5 also facilitates the expression of p53,cyclin-dependent kinase inhibitor 1A(CDKN1A)and tumor necrosis factor receptor superfamily 10B(TNFRSF10B).The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53,CDKN1A and TNFRSF10B.CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B. 展开更多
关键词 Sm-like 5 Colon cancer proliferation Apoptosis KNOCKDOWN
下载PDF
PbGIF1 promoting cell-proliferation in pear fruit is transcriptionally activated by Pb RR1
15
作者 Huibin Wang Guangya Sha +5 位作者 Rui Gao Jianwen Pang Rui Zhai Chengquan Yang Zhigang Wang Lingfei Xu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期689-697,共9页
As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear... As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear.According to transcriptome data,we identified PbGIF1was highly expressed during fruit development in cytokinins induced parthenocarpy pear.In the present study,the biofunction of PbGIF1 was initially verified.Overexpression of PbGIF1 promoted fruit size of transgenic tomato.The size of flesh fruit was not affected by cell expansion but the cell proliferation was promoted by overexpressing Pb GIF1.The accelerated cell proliferation process was also observed in PbGIF1-overexpressed transgenic pear fruit calli.The transcriptional regulation of cytokinins on PbGIF1 was further confirmed by exogenous CPPU treatments in pear fruitlets.To investigate the underlying mechanism,the cytokinins-responded factor,PbRR1,was further focused on.The results of Yeast-one-hybrid assay suggested that PbRR1 can bind to the promoter sequence of PbGIF1.The transcriptional activation of PbRR1 on PbGIF1 was also confirmed by Dual-Luciferase assays.Taken together,the results showed that cytokinins control pear fruit development via the transcriptional activation of PbGIF1 by PbRR1. 展开更多
关键词 PbGIF1 Cell proliferation PEAR Fruit development CYTOKININS PbRR1
下载PDF
Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
16
作者 WU Shou-Wu LIN Shao-Kun +11 位作者 NIAN Zhong-Zhu WANG Xin-Wen LIN Wei-Nian ZHUANG Li-Ming WU Zhi-Sheng HUANG Zhi-Wei WANG A-Min GAO Ni-Li CHEN Jia-Wen YUAN Wen-Ting LU Kai-Xian LIAO Jun 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第9期2182-2193,共12页
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect... Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC. 展开更多
关键词 mucin 1 nasopharyngeal carcinoma NF-κB signaling pathway proliferation APOPTOSIS
下载PDF
Knockdown of circular RNA (CircRNA)_001896 inhibits cervical cancer proliferation and stemness in vivo and in vitro
17
作者 JIA SHAO CAN ZHANG +2 位作者 YAONAN TANG AIQIN HE WEIPEI ZHU 《BIOCELL》 SCIE 2024年第4期571-580,共10页
Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.Howev... Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.However,the expression,clinical significance,and effects on cell propagation,invasion,and dissemination of circRNA_001896 in cervical cancer(CC)tissues remain unclear.Methods:The Gene Expression Omnibus(GEO)datasets(GSE113696 and GSE102686)were used to examine differential circRNA expression in CC and adjacent tissues.The expression of circRNA_001896 was detected in 72 CC patients usingfluorescence quantitative PCR.Correlation analysis with clinical pathological features was performed through COX multivariate and univariate analysis.The effect of circRNA_001896 downregulation on CC cell propagation was examined using the cell counting kit-8(CCK-8)test,clonogenic,3D sphere formation,and in vivo tumorigenesis assays.Results:Intersection of the GSE113696 and GSE102686 datasets revealed an increased expression of four circRNAs,including circRNA_001896,in CC tissues.Fluorescence quantitative PCR confirmed circRNA_001896 as a circular RNA.High expression of circRNA_001896 was considerably associated with lymph node metastasis,International Federation of Gynecologists and Obstetricians(FIGO)stage,tumor diameter,and survival period in CC patients.Proportional hazards model(COX)univariate and multivariate analyses revealed that circRNA_001896 expressions are a distinct risk factor affecting CC patients’prognosis.Cellular functional experiments showed that downregulating circRNA_001896 substantially suppressed CC cell growth,colony formation,and 3D sphere-forming ability.In vivo,tumorigenesis analysis in nude mice demonstrated that downregulating circRNA_001896 remarkably reduced the in vivo proliferation capacity of CC cells.Conclusion:CircRNA_001896 is highly expressed in CC tissues and is substantially related to lymph node metastasis,FIGO stage,tumor size,and survival period in patients.Moreover,downregulating circRNA_001896 significantly inhibits both in vivo and in vitro propagation of CC cells.Therefore,circRNA_001896 might be used as a biomarker for targeted therapy in cervical cancer. 展开更多
关键词 Uterine cervical neoplasms RNA CIRCULAR Cell proliferation Cancer stem cells
下载PDF
Growth and inhibition of zinc anode dendrites in Zn-air batteries:Model and experiment
18
作者 Cuiping He Qingyi Gou +6 位作者 Yanqing Hou Jianguo Wang Xiang You Ni Yang Lin Tian Gang Xie Yuanliang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate... Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode. 展开更多
关键词 Zn-air battery Zinc anode Zinc dendrite Simulated dendrite growth Inhibit dendrite growth Phase-field model
下载PDF
Exosome-Transmitted miR-224-5p Promotes Colorectal Cancer Cell Proliferation via Targeting ULK2 in p53-Dependent Manner
19
作者 YANG Le Mei ZHENG Qi +5 位作者 LIU Xiao Jia LI Xian Xian Veronica Lim CHEN Qi ZHAO Zhong Hua WANG Shu Yang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第1期71-84,共14页
Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser captu... Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR,respectively.Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p.The protein expressions of p53 and unc-51 like kinase 2(ULK2)in CRC cells were detected by western blot.Flow cytometry was used to detect cell cycle and apoptosis.Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage.CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner,and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine.Moreover,ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues.Interestingly,ULK2 inhibited CRC cell proliferation in a p53-dependent manner.Furthermore,exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC,which may offer promising targets for CRC prevention and therapy. 展开更多
关键词 miR-224-5p EXOSOME ULK2 P53 Cell proliferation Colorectal cancer
下载PDF
circRNA3669 promotes goat endometrial epithelial cells proliferation via miR-26a/RCN2 to activate PI3K/AKT-mTOR and MAPK pathways
20
作者 Xiaorui Liu Jiuzeng Cui +8 位作者 Mengyao Wei Xiaofei Wang Yuexia Liu Zhongshi Zhu Min Zhou Gui Ba Langda Suo Yuxuan Song Lei Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期960-974,共15页
The development of receptive endometrium(RE) from pre-receptive endometrium(PE) for successful embryo implantation is a complex dynamic process in which the morphology and physiological states of the endometrial epith... The development of receptive endometrium(RE) from pre-receptive endometrium(PE) for successful embryo implantation is a complex dynamic process in which the morphology and physiological states of the endometrial epithelium undergo a series of significant changes, including cell proliferation and apoptosis. However, the molecular mechanisms are not yet fully understood. In this study, a higher circRNA3669 level was observed in PE than in RE of goats. Functional assays revealed that this overexpression promoted the proliferation of goat endometrial epithelial cells(GEECs) by activating the expression of genes related to the PI3K/AKT-mTOR and MAPK pathways,thereby inhibiting apoptosis in vitro. Furthermore, circRNA3669 functioned as a competing endogenous RNA(ceRNA) to upregulate Reticulocalbin-2(RCN2) expression at the post-transcriptional level by interacting with and downregulating miR-26a in GEECs. In addition, RCN2, which is highly expressed in the PE of goats, was found to be regulated by β-estradiol(E2) and progesterone(P4). Our results demonstrated that RCN2 also affected the key proteins PI3K, AKT, mTOR, JNK, and P38 in the PI3K/AKT-mTOR and MAPK pathways, thereby facilitating GEECs proliferation and suppressing their apoptosis in vitro. Collectively, we constructed a new circRNA3669-miR-26aRCN2 regulatory network in GEECs, which further provides strong evidence that circRNA could potentially play a crucial regulatory role in the development of RE in goats. 展开更多
关键词 circRNA3669 RCN2 miR-26a goat endometrial epithelial cells(GEECs) proliferation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部