Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein tyrosine kinase,which is also known as Ca2 +-dependent tyrosine kinase or related adhesion focal tyrosine kinase.Pyk2 activation exerts a critical regulat...Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein tyrosine kinase,which is also known as Ca2 +-dependent tyrosine kinase or related adhesion focal tyrosine kinase.Pyk2 activation exerts a critical regulatory mechanism for various physiological processes including cytoskeleton function,regulation of cell growth and death,modulation of ion channels and multiple signaling events.However,mechanisms underlying the functional diversity of Pyk2 are not clear.A Pyk2 isoform that encodes only part of the C-terminal domain of Pyk2,named as PRNK (Pyk2-related non-kinase),acts as a dominant-negative inhibitor of Pyk2-dependent signaling by displacing Pyk2 from focal adhesions.Research on functional PRNK probably provides new potential inhibitory tool targeting Pyk2 and makes it possible to explore more of Pyk2 pathological mechanism.PRNK is a promising candidate targeting Pyk2 modulation.This review focuses on the functional investigation of Pyk2 and its structure and localization,including recent research with inhibitory strategies targeting Pyk2 by the method of PRNK.展开更多
目的:探讨鸢尾素调节Janus蛋白酪氨酸激酶2(Janus protein tyrosine kinase 2,JAK2)/信号转导和转录激活子3(Signal transduction and activator of transcription 3,STAT3)信号通路对牙周炎大鼠牙周组织损伤的影响。方法:通过结扎和接...目的:探讨鸢尾素调节Janus蛋白酪氨酸激酶2(Janus protein tyrosine kinase 2,JAK2)/信号转导和转录激活子3(Signal transduction and activator of transcription 3,STAT3)信号通路对牙周炎大鼠牙周组织损伤的影响。方法:通过结扎和接种牙龈卟啉单胞菌液建立牙周炎大鼠模型,将大鼠随机分为模型组、鸢尾素低(鸢尾素-L,50 mg/kg)、中(鸢尾素-M,100 mg/kg)、高剂量(鸢尾素-H,200 mg/kg)组、鸢尾素-H+激活剂(200 mg/kg鸢尾素+2 mg/kg香豆霉素)组,每组10只,并以注射等体积生理盐水的正常大鼠对照组。干预结束后,对大鼠牙龈出血指数、牙齿松动度评分;牙槽骨吸收、肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)、白细胞介素(Interleukin,IL)-6、IL-1β以及丙二醛(Malondialdehyde,MDA)、超氧化物歧化酶(Superoxide dismutase,SOD)水平分别以Micro-CT试剂盒检测;HE检测牙周组织病理学变化;Western blot检测JAK2、STAT3、p-JAK2、p-STAT3蛋白表达。结果:与对照组相比,模型组大鼠牙周组织被破坏,炎性浸润严重,牙龈出血指数、牙齿松动度评分、牙槽骨吸收、TNF-α、IL-6、IL-1β、MDA水平、p-JAK2/JAK2、p-STAT3/STAT3表达显著增加,SOD水平显著降低(P<0.05);与模型组相比,不同剂量的鸢尾素组大鼠病理损伤得到改善,牙龈出血指数、牙齿松动度评分、牙槽骨吸收、TNF-α、IL-6、IL-1β、MDA水平、p-JAK2/JAK2、p-STAT3/STAT3表达显著降低,SOD水平显著增加,具有剂量依赖性(P<0.05);与鸢尾素-H组相比,鸢尾素-H组+激活剂组大鼠病理损伤加重,大鼠牙龈出血指数、牙齿松动度评分、牙槽骨吸收、TNF-α、IL-6、IL-1β、MDA水平、p-JAK2/JAK2、p-STAT3/STAT3表达显著增加,SOD水平显著降低(P<0.05)。结论:鸢尾素抑制牙周炎大鼠氧化应激、炎性反应,减轻大鼠牙周组织损伤,减少牙槽骨吸收,可能与抑制JAK2/STAT3信号通路有关。展开更多
BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, th...BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, the signal pathway by which electromagnetic radiation influences DA synthesis remains controversial. OBJECTIVE: To determine tyrosine hydroxylase (TH) expression in PC12 cells and DA levels in cell culture media after different periods of low-frequency pulsed electric field (LF-PEF) stimulation, and to determine how LF-PEF signaling stimulates TH synthesis using inhibitors. DESIGN, TIME AND SETTING: A parallel, controlled, cell experiment was performed at the Laboratory of Cell Biology, School of Life Science, East China Normal University, between January and October 2006. MATERIALS: PC12 cells were purchased from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China. Nerve growth factor was purchased from PeproTech, USA. The protein kinase A inhibitor, H-89, and mitogen-activated protein kinase kinase inhibitor, U0126, were purchased from Sigma, USA. METHODS: (1) Following routine culture in Dulbecco's modified eagle medium, primary PC12 cells were stimulated under LF-PEF (pulse frequency 50.Hz, pulse width 20 μs, peak field strength 1 V/m) for 5, 10, 15, 20, and 30 minutes. (2) Inhibitors (H-89 or U0126, 1 μmol/L) were added 30 minutes before LF-PEF stimulation for 10 minutes. MAIN OUTCOME MEASURES: (1) TH expression was determined by Western blot in PC12 cells at 0.5, 1,2, 3, and 4 days after LF-PEF stimulation. Similarly, DA was measured by high-performance liquid chromatography in media at 2, 3, 4, or 5 days after LF-PEE (2) TH expression was detected 1 day after H-89 or U0126 treatment and LF-PEE RESULTS: (1) Short-term LF-PEF stimulation (5 and 10 minutes) increased TH expression and media DA levels after short-term culture (2 days) (P 〈 0.01), but both parameters decreased with longer culture (3 4 days) (P 〈 0.01). Long-term LF-PEF stimulation (15, 20, or 30 minutes) decreased TH and DA synthesis, followed by a rapid increase (P 〈 0.01). (2) H89 could completely inhibit TH expression in PC12 cells stimulated by LF-PEF for 10 minutes, while the inhibition rate of U0126 was 53.2%. CONCLUSION: Short-term LF-PEF first promotes then inhibits, while long-term LF-PEF first inhibits then promotes, TH and DA synthesis. LF-PEF stimulation regulates TH expression primarily by activating protein kinase A to regulate DA synthesis.展开更多
目的观察柴胡皂苷D对非小细胞肺癌(NSCLC)H460细胞增殖、凋亡的影响,并探讨可能机制。方法取对数期H460细胞,随机分为对照组,实验A、B、C组,对照组常规培养,实验A组加入柴胡皂苷D(20μmol/L),实验B组加入colivelin[Janus蛋白酪氨酸激酶2...目的观察柴胡皂苷D对非小细胞肺癌(NSCLC)H460细胞增殖、凋亡的影响,并探讨可能机制。方法取对数期H460细胞,随机分为对照组,实验A、B、C组,对照组常规培养,实验A组加入柴胡皂苷D(20μmol/L),实验B组加入colivelin[Janus蛋白酪氨酸激酶2(JAK2)/信号转导及转录激活子3(STAT3)通路激活剂](0.5μmol/L),实验C组加入柴胡皂苷D(20μmol/L)与colivelin(0.5μmol/L)。MTT法检测细胞增殖能力;双染法检测细胞凋亡率;实时荧光定量聚合酶链反应(qRT-PCR)法检测细胞白介素-2(IL-2)、白介素-10(IL-10)mRNA表达量;Western blotting法检测细胞p-JAK2、JAK2、p-STAT3、STAT3蛋白表达量。结果与对照组比较,实验A组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3降低,细胞凋亡率、IL-2 mRNA表达量升高(P<0.05),实验B组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3升高,细胞凋亡率、IL-2 mRNA表达量降低(P<0.05);与实验A组比较,实验C组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3升高,细胞凋亡率、IL-2 mRNA表达量降低(P<0.05);与实验B组比较,联合组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3降低,细胞凋亡率、IL-2 mRNA表达量升高(P<0.05)。结论柴胡皂苷D可抑制NSCLC细胞增殖,促进其凋亡,其作用机制可能与抑制JAK2/STAT3信号通路有关。展开更多
Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complex...Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.展开更多
基金Supported by the National Natural Science Foundation of China(30700822)
文摘Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein tyrosine kinase,which is also known as Ca2 +-dependent tyrosine kinase or related adhesion focal tyrosine kinase.Pyk2 activation exerts a critical regulatory mechanism for various physiological processes including cytoskeleton function,regulation of cell growth and death,modulation of ion channels and multiple signaling events.However,mechanisms underlying the functional diversity of Pyk2 are not clear.A Pyk2 isoform that encodes only part of the C-terminal domain of Pyk2,named as PRNK (Pyk2-related non-kinase),acts as a dominant-negative inhibitor of Pyk2-dependent signaling by displacing Pyk2 from focal adhesions.Research on functional PRNK probably provides new potential inhibitory tool targeting Pyk2 and makes it possible to explore more of Pyk2 pathological mechanism.PRNK is a promising candidate targeting Pyk2 modulation.This review focuses on the functional investigation of Pyk2 and its structure and localization,including recent research with inhibitory strategies targeting Pyk2 by the method of PRNK.
基金the National Natural Science Foundation of China,No.50677022
文摘BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, the signal pathway by which electromagnetic radiation influences DA synthesis remains controversial. OBJECTIVE: To determine tyrosine hydroxylase (TH) expression in PC12 cells and DA levels in cell culture media after different periods of low-frequency pulsed electric field (LF-PEF) stimulation, and to determine how LF-PEF signaling stimulates TH synthesis using inhibitors. DESIGN, TIME AND SETTING: A parallel, controlled, cell experiment was performed at the Laboratory of Cell Biology, School of Life Science, East China Normal University, between January and October 2006. MATERIALS: PC12 cells were purchased from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China. Nerve growth factor was purchased from PeproTech, USA. The protein kinase A inhibitor, H-89, and mitogen-activated protein kinase kinase inhibitor, U0126, were purchased from Sigma, USA. METHODS: (1) Following routine culture in Dulbecco's modified eagle medium, primary PC12 cells were stimulated under LF-PEF (pulse frequency 50.Hz, pulse width 20 μs, peak field strength 1 V/m) for 5, 10, 15, 20, and 30 minutes. (2) Inhibitors (H-89 or U0126, 1 μmol/L) were added 30 minutes before LF-PEF stimulation for 10 minutes. MAIN OUTCOME MEASURES: (1) TH expression was determined by Western blot in PC12 cells at 0.5, 1,2, 3, and 4 days after LF-PEF stimulation. Similarly, DA was measured by high-performance liquid chromatography in media at 2, 3, 4, or 5 days after LF-PEE (2) TH expression was detected 1 day after H-89 or U0126 treatment and LF-PEE RESULTS: (1) Short-term LF-PEF stimulation (5 and 10 minutes) increased TH expression and media DA levels after short-term culture (2 days) (P 〈 0.01), but both parameters decreased with longer culture (3 4 days) (P 〈 0.01). Long-term LF-PEF stimulation (15, 20, or 30 minutes) decreased TH and DA synthesis, followed by a rapid increase (P 〈 0.01). (2) H89 could completely inhibit TH expression in PC12 cells stimulated by LF-PEF for 10 minutes, while the inhibition rate of U0126 was 53.2%. CONCLUSION: Short-term LF-PEF first promotes then inhibits, while long-term LF-PEF first inhibits then promotes, TH and DA synthesis. LF-PEF stimulation regulates TH expression primarily by activating protein kinase A to regulate DA synthesis.
文摘目的观察柴胡皂苷D对非小细胞肺癌(NSCLC)H460细胞增殖、凋亡的影响,并探讨可能机制。方法取对数期H460细胞,随机分为对照组,实验A、B、C组,对照组常规培养,实验A组加入柴胡皂苷D(20μmol/L),实验B组加入colivelin[Janus蛋白酪氨酸激酶2(JAK2)/信号转导及转录激活子3(STAT3)通路激活剂](0.5μmol/L),实验C组加入柴胡皂苷D(20μmol/L)与colivelin(0.5μmol/L)。MTT法检测细胞增殖能力;双染法检测细胞凋亡率;实时荧光定量聚合酶链反应(qRT-PCR)法检测细胞白介素-2(IL-2)、白介素-10(IL-10)mRNA表达量;Western blotting法检测细胞p-JAK2、JAK2、p-STAT3、STAT3蛋白表达量。结果与对照组比较,实验A组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3降低,细胞凋亡率、IL-2 mRNA表达量升高(P<0.05),实验B组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3升高,细胞凋亡率、IL-2 mRNA表达量降低(P<0.05);与实验A组比较,实验C组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3升高,细胞凋亡率、IL-2 mRNA表达量降低(P<0.05);与实验B组比较,联合组24、48、72 h MTT实验吸光度值、细胞IL-10 mRNA表达量、p-JAK2/JAK2、p-STAT3/STAT3降低,细胞凋亡率、IL-2 mRNA表达量升高(P<0.05)。结论柴胡皂苷D可抑制NSCLC细胞增殖,促进其凋亡,其作用机制可能与抑制JAK2/STAT3信号通路有关。
文摘Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.