期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
LLaMA-LoRA Neural Prompt Engineering:A Deep Tuning Framework for Automatically Generating Chinese Text Logical Reasoning Thinking Chains
1
作者 Songlin Chen Weicheng Wang +3 位作者 Xiaoliang Chen Peng lu Zaiyan Yang Yajun Du 《Data Intelligence》 EI 2024年第2期375-408,共34页
The exption of Chinese natural language processing(NLP)has stimulated research in the broader NLP domain.However,existing large language models have limitations in comprehending and reasoning in Chinese.This paper add... The exption of Chinese natural language processing(NLP)has stimulated research in the broader NLP domain.However,existing large language models have limitations in comprehending and reasoning in Chinese.This paper addresses these limitations by enhancing Chinese language models comprehension and reasoning capabilities while minimizing resource requirements.We propose LLaMA-LoRA,a neural prompt engineering framework that builds upon the LLaMA-13B model and incorporates the Low-Rank Adaptation(LoRA)of Large Language Models technique for refinement.Chain-of-Thought(CoT)are crucial for generating intermediate reasoning chains in language models,but their effectiveness can be limited by isolated language patterns.Erroneous reasoning resulting from conventional prompts negatively impacts model performance.Automatic prompts are introduced to encourage reasoning chain generation and accurate answer inference.Training the model with an extensive corpus of Chinese CoT data enhances its comprehension and reasoning abilities.The LLaMA-LoRA model demonstrates exceptional performance across numerous Chinese language tasks,surpassing benchmark performance achieved by related language models such as GPT-3.5,Chat-GLM,and OpenAssistant,delivering accurate,comprehensive,and professional answers.The availability of our open-source model code facilitates further research in the field of Chinese text logical reasoning thinking chains. 展开更多
关键词 Chinese natural language processing Neural prompt engineering Large language models Low-Rank adaptation Chain-of-thought
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部