In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propaga...In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propagation,mainly focusing on drought propagation time and propagation probability.However,there are relatively few studies on the sensitivities of drought propagation to seasons and drought levels.Therefore,we took the Heihe River Basin(HRB)of Northwest China as the case study area to quantify the propagation time and propagation probability from meteorological drought to agricultural drought during the period of 1981–2020,and subsequently explore their sensitivities to seasons(irrigation and non-irrigation seasons)and drought levels.The correlation coefficient method and Copula-based interval conditional probability model were employed to determine the drought propagation time and propagation probability.The results determined the average drought propagation time as 8 months in the whole basin,which was reduced by 2 months(i.e.,6 months)on average during the irrigation season and prolonged by 2 months(i.e.,10 months)during the non-irrigation season.Propagation probability was sensitive to both seasons and drought levels,and the sensitivities had noticeable spatial differences in the whole basin.The propagation probability of agricultural drought at different levels generally increased with the meteorological drought levels for the upstream,midstream,and southern downstream regions of the HRB.Lesser agricultural droughts were more likely to be triggered during the irrigation season,while severer agricultural droughts were occurred mostly during the non-irrigation season.The research results are helpful to understand the characteristics of drought propagation and provide a scientific basis for the prevention and control of droughts.This study is of great significance for the rational planning of local water resources and maintaining good ecological environment in the HRB.展开更多
In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path ...In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.展开更多
An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmltico...An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmlticonfiguration tirne-dependent Hartree theory for imag- inary time propagation and an importance sampling procedure for calculating the quantum mechanical trace. The method is applied to the spin-boson Harniltonian, which leads to ac- curate results in agreement with those produced by the rnulti-electronic-state path integral molecular dynamics method.展开更多
We present a new family of fourth-order splitting methods with positive coefficients especially tailored for the time integration of linear parabolic problems and,in particular,for the time dependent Schrodinger equat...We present a new family of fourth-order splitting methods with positive coefficients especially tailored for the time integration of linear parabolic problems and,in particular,for the time dependent Schrodinger equation,both in real and imaginary time.They are based on the use of a double commutator and a modified processor,and are more efficient than other widely used schemes found in the literature.Moreover,for certain potentials,they achieve order six.Several examples in one,two and three dimensions clearly illustrate the computational advantages of the new schemes.展开更多
The exact short time propagator, in a form similar to the Crank-Nicholson method but in the spirit of spectrally transformed Hamiltonian, was proposed to solve the triatomic reactive time-dependent schrodinger equatio...The exact short time propagator, in a form similar to the Crank-Nicholson method but in the spirit of spectrally transformed Hamiltonian, was proposed to solve the triatomic reactive time-dependent schrodinger equation. This new propagator is exact and unconditionally convergent for calculating reactive scattering processes with large time step sizes. In order to improve the computational efficiency, the spectral difference method was applied. This resulted the Hamiltonian with elements confined in a narrow diagonal band. In contrast to our previous theoretical work, the discrete variable representation was applied and resulted in full Hamiltonian matrix. As examples, the collision energy-dependent probability of the triatomic H+H2 and O+O2 reaction are calculated. The numerical results demonstrate that this new propagator is numerically accurate and capable of propagating the wave packet with large time steps. However, the efficiency and accuracy of this new propagator strongly depend on the mathematical method for solving the involved linear equations and the choice of preconditioner.展开更多
A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the ...A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.展开更多
基金supported by the National Natural Science Foundation of China (41101038)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2021nkms03)
文摘In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propagation,mainly focusing on drought propagation time and propagation probability.However,there are relatively few studies on the sensitivities of drought propagation to seasons and drought levels.Therefore,we took the Heihe River Basin(HRB)of Northwest China as the case study area to quantify the propagation time and propagation probability from meteorological drought to agricultural drought during the period of 1981–2020,and subsequently explore their sensitivities to seasons(irrigation and non-irrigation seasons)and drought levels.The correlation coefficient method and Copula-based interval conditional probability model were employed to determine the drought propagation time and propagation probability.The results determined the average drought propagation time as 8 months in the whole basin,which was reduced by 2 months(i.e.,6 months)on average during the irrigation season and prolonged by 2 months(i.e.,10 months)during the non-irrigation season.Propagation probability was sensitive to both seasons and drought levels,and the sensitivities had noticeable spatial differences in the whole basin.The propagation probability of agricultural drought at different levels generally increased with the meteorological drought levels for the upstream,midstream,and southern downstream regions of the HRB.Lesser agricultural droughts were more likely to be triggered during the irrigation season,while severer agricultural droughts were occurred mostly during the non-irrigation season.The research results are helpful to understand the characteristics of drought propagation and provide a scientific basis for the prevention and control of droughts.This study is of great significance for the rational planning of local water resources and maintaining good ecological environment in the HRB.
文摘In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.
基金supported by the U.S.National Science Foundation CHE-1500285used resources from the National Energy Research Scientific Computing Center,which is supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231+2 种基金supported by the Ministry of Science and Technology of China(No.2017YFA0204901 and No.2016YFC0202803)the National Natural Science Foundation of China(No.21373018 and No.21573007)the Recruitment Program of Global Experts,and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase) under grant No.U1501501
文摘An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmlticonfiguration tirne-dependent Hartree theory for imag- inary time propagation and an importance sampling procedure for calculating the quantum mechanical trace. The method is applied to the spin-boson Harniltonian, which leads to ac- curate results in agreement with those produced by the rnulti-electronic-state path integral molecular dynamics method.
基金supported by Ministerio de Ciencia e Innovacion(Spain)through projects PID2019-104927GB-C21 and PID2019-104927GB-C22,MCIN/AEI/10.13039/501100011033,ERDF(“A way of making Europe”)the support of the Conselleria d’Innovacio,Universitats,Ciencia i Societat Digital from the Generalitat Valenciana(Spain)through project CIAICO/2021/180.
文摘We present a new family of fourth-order splitting methods with positive coefficients especially tailored for the time integration of linear parabolic problems and,in particular,for the time dependent Schrodinger equation,both in real and imaginary time.They are based on the use of a double commutator and a modified processor,and are more efficient than other widely used schemes found in the literature.Moreover,for certain potentials,they achieve order six.Several examples in one,two and three dimensions clearly illustrate the computational advantages of the new schemes.
文摘The exact short time propagator, in a form similar to the Crank-Nicholson method but in the spirit of spectrally transformed Hamiltonian, was proposed to solve the triatomic reactive time-dependent schrodinger equation. This new propagator is exact and unconditionally convergent for calculating reactive scattering processes with large time step sizes. In order to improve the computational efficiency, the spectral difference method was applied. This resulted the Hamiltonian with elements confined in a narrow diagonal band. In contrast to our previous theoretical work, the discrete variable representation was applied and resulted in full Hamiltonian matrix. As examples, the collision energy-dependent probability of the triatomic H+H2 and O+O2 reaction are calculated. The numerical results demonstrate that this new propagator is numerically accurate and capable of propagating the wave packet with large time steps. However, the efficiency and accuracy of this new propagator strongly depend on the mathematical method for solving the involved linear equations and the choice of preconditioner.
文摘A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.