The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO tech...The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.展开更多
Propane dehydrogenation(PDH)provides an alternative route to non-petroleum based propylene and eligible catalysts with good overall performance are still being explored.Herein,we report the construction of zeolite sta...Propane dehydrogenation(PDH)provides an alternative route to non-petroleum based propylene and eligible catalysts with good overall performance are still being explored.Herein,we report the construction of zeolite stabilized Pt-Zn catalysts Pt-Zn/Si-Beta for PDH.Characterization results from transmission electron microscopy(TEM),ultraviolet-visible(UV-vis)and Fourier transform infrared(FTIR)spectroscopy reveal that highly-dispersed Zn species are stabilized by the silanols from zeolite framework dealumination,which then act as the anchoring sites for Pt species.The close contact between Pt-Zn species and the electronic interaction thereof make Pt-Zn/Si-Beta robust PDH catalysts.Under optimized conditions,a high propylene production rate of 4.11 molmol_(Pt)^(-1)s^(-1),high propylene selectivity of 98% and a sustainable deactivation rate of~0.02 h^(-1)can be simultaneously achieved at 823 K.Coke deposition is not the key reason for the catalytic deactivation,while the loss of Zn species and the resulting aggregation of Pt species under high temperatures are responsible for the irreversible deactivation of Pt-Zn/Si-Beta catalyst in PDH reaction.展开更多
A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke com...A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke combustion.Simulation shows that under practical operating conditions,multi-steady states exist for the catalyst pellets and the catalyst temperature is sensitive to gas temperature.However,at increased mass flow rate or lowered oxygen concentration,multi-steady states will not appear.Under the strong influences of film diffusion,the coke in the packed bed reactor will first be exhausted at the inlet,while if the film diffusion resistance is decreased,the position of first coke exhaustion moves toward the outlet of the reactor.展开更多
Propane dehydrogenation(PDH), employing Pt-or Cr-based catalysts, represents an emerging industrial route for propylene production. Due to the scarcity of platinum and the toxicity of chromium, alternative PDH catalys...Propane dehydrogenation(PDH), employing Pt-or Cr-based catalysts, represents an emerging industrial route for propylene production. Due to the scarcity of platinum and the toxicity of chromium, alternative PDH catalysts are being pursued. Herein, we report the construction of Zn-containing zeolite catalysts,namely Zn@S-1, for PDH reaction. Well-isolated zinc cations are successfully trapped and stabilized by the Si-OH groups in S-1 zeolites via in-situ hydrothermal synthesis. The as-prepared Zn@S-1 catalysts exhibit good dehydrogenation activity, high propylene selectivity, and regeneration capability in PDH reaction under employed conditions. The in-situ partial reduction of zinc species is observed and the partially reduced zinc cations are definitely identified as the active sites for PDH reaction.展开更多
PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydr...PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.展开更多
A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was ...A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was also prepared using a conventional impregnation method.The catalystswere characterized using various methods,and their activities in propane dehydrogenation wereinvestigated.The incorporation of Sn into the SBA‐15matrix led to strong interactions between Snspecies and the support,and these helped to maintain the oxidation states of Sn species during thereaction.Substitution with Sn changed the interfacial properties of the Pt species and improved thefunction and effect of the Sn promoter.The catalytic activities and stabilities of the Pt catalysts supportedon Sn‐incorporated SBA‐15were better than those of the impregnated sample.However,thecatalytic performance deteriorated when an excessive amount of Sn was introduced and the interactionsamong Pt,Sn species,and the support became weaker.The Pt/0.5Sn‐SBA‐15catalyst gavethe best propene selectivity,i.e.,98.5%,with a corresponding propane conversion of about43.8%.展开更多
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regenerat...Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.展开更多
Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepa...Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepared by an impregnation method using Pt(NH_(3))_(4)(NO_(3))_(2) as metal precursors. It has been found that the Pt/BN catalyst undergoing calcination and reduction is highly stable in both PDH reaction and coke-burning regeneration, together with low coke deposition and outstanding propylene selectivity(99%). Detailed characterizations reveal that the high coke resistance and high propylene selectivity of the Pt/BN catalyst are derived not only from the absence of acidity on BN support, but also from the calcination-induced and reduction-adjusted strong metal-support interaction(SMSI) between Pt and BN, which causes the partial encapsulation of Pt particles by BO_(x) overlayers. The BO_(x) overlayers can block the low-coordinated Pt sites and constrain Pt particles into smaller ensembles, suppressing side reactions such as cracking and deep dehydrogenation. Moreover, the BO_(x) overlayers can effectively inhibit Pt sintering by the spatial isolation of Pt during periodic reaction-regeneration cycles. In this work, the catalyst support for PDH is expanded to nonoxide BN, and the understanding of SMSI between Pt and BN will provide rational design strategy for BN-based catalysts.展开更多
A series of PtSn/hierarchical ZSM-5 catalysts were developed for propane dehydrogenation,in which the PtSn bimetallic particles are confined in the mesopores of hierarchical ZSM-5 zeolite.The synthesis of PtSn/hierarc...A series of PtSn/hierarchical ZSM-5 catalysts were developed for propane dehydrogenation,in which the PtSn bimetallic particles are confined in the mesopores of hierarchical ZSM-5 zeolite.The synthesis of PtSn/hierarchical ZSM-5 catalysts was achieved via the loading of Pt and Sn species onto the hierarchical ZSM-5 catalysts that are obtained through a desilication of conventional ZSM-5.The PtSn/hierarchical ZSM-5 catalysts were fully characterized by XRD,N_(2) adsorption,STEM,XPS,and CO-IR techniques,which reveals that highly dispersed PtSn bimetallic nanoparticles are enclosed into mesopores of hierarchical ZSM-5.The catalytic performance of PtSn/hierarchical ZSM-5 is greatly affected by the concentrations of alkali solution in the desilication process and Sn/Pt ratios in PtSn bimetallic particles.The PtSn1.00/ZSM-5(0.8)catalyst shows the highest efficiency in propane dehydrogenation,which gives an initial conversion of 46%and selectivity of 98%at 570℃.The high efficiency in these PtSn/hierarchical ZSM-5 catalysts for propane dehydrogenation is mainly ascribed to the confinement of PtSn particles in the mesopores of hierarchical ZSM-5 zeolite.展开更多
PtSnSr/HZSM-5 catalysts with different amounts of strontium were prepared by sequential impregnation method, and characterized by BET analysis, TEM, NH3-TPD, Hz-TPR, TPO and TG techniques. The results showed that the ...PtSnSr/HZSM-5 catalysts with different amounts of strontium were prepared by sequential impregnation method, and characterized by BET analysis, TEM, NH3-TPD, Hz-TPR, TPO and TG techniques. The results showed that the addition of strontium could modify the characteristics and properties of both acid function and metal function of Pt-Sn-based cata- lysts. In this case, PtSnSr/HZSM-5 catalyst with an appropriate amount of Sr (1.2%) showed higher catalytic activity and lower amount of coke deposits than PtSn/HZSM-5 catalyst. However, excessive loading of Sr could facilitate the reduction of Sn, which was unfavorable to the reaction. Afterwards, 1.0 m% of Na was added into the PtSnSr(1.2%)/HZSM-5 catalyst to improve the catalytic performance in propane dehydrogenation, and this catalyst displayed the best catalytic performance during our experiments. After having been subjected to reaction for 5 h, the PtSnNa(1.0%)Sr(1,2%)/HZSM-5 catalyst had achieved a higher than 95% selectivity towards propene along with a corresponding propane conversion rate of 32.2%.展开更多
The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM,...The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM, XPS, NH3-TPD, H2 chemisorption, TPR and TPO techniques. It has been found that with suitable amount of cerium addition, the platinum dispersion increased, while the carbon deposition tended to be eliminated easily. In these cases, the presence of cerium could not only realize the better distribution of metallic particles on the support, but also strengthen the interactions between Sn species and the support. Additionally, XPS spectra confirmed that more amounts of tin could exist in oxidized form, which was advantageous to the reaction. In our experiments, PtSnNaCe (1.1 wt%)/ZSM-5 catalyst exhibited the best catalytic performance. After running the reaction for 750 h, propane conversion was maintained higher than 30% with the corresponding selectivity to propylene of about 97%.展开更多
Alumina materials are widely applied either as a catalyst or support in various industrial catalytic processes. Impurities in alumina that are unfriendly to catalytic performance are inevitably present during the prod...Alumina materials are widely applied either as a catalyst or support in various industrial catalytic processes. Impurities in alumina that are unfriendly to catalytic performance are inevitably present during the production processes. Facing this problem, we here report that the use of sulfur-containing alumina as the support can generate active alumina-supported platinum catalyst, which exhibits superior propylene selectivity and anti-coking ability during propane dehydrogenation. It demonstrated that the sulfur impurity in alumina is not entirely detrimental. During the reduction process, the formation of gas-phase sulfur species increased the electrons and poisoned unsaturated sites of platinum particles. The sulfur impurity in alumina can be removed through a hydrogen reduction process, and the degree of desulfurization is correlated with the operating temperature. This study demonstrated that the rational use of impurity will contribute to the design of a catalyst with high reactivity for potential applications.展开更多
Boron-modified ZrO2(B-ZrO2)was synthesized under various pH values(9,10,and 11)and used as the supports of PtSn catalysts(PtSn/B-ZrO2-x)for non-oxidative dehydrogenation of propane.The NH3-TPD and pyridine IR show tha...Boron-modified ZrO2(B-ZrO2)was synthesized under various pH values(9,10,and 11)and used as the supports of PtSn catalysts(PtSn/B-ZrO2-x)for non-oxidative dehydrogenation of propane.The NH3-TPD and pyridine IR show that only Lewis acid is present and the acid strength increases with the synthesis pH.PtSn/B-ZrO2-10 exhibits the best catalytic performance with an initial propane conversion of 36%and a deactivation rate constant(kd)of 0.0127 h^-1.The XPS results indicate that the electronic properties of Pt and SnOx are affected not only by their interaction but also by the interaction with support.After a careful analysis of the oxygen storage capacity and activity in CO oxidation,it is hypothesized that the interaction between Pt and Sn becomes stronger following the order:PtSn/B-ZrO2-9<PtSn/B-ZrO2-11<PtSn/B-ZrO2-10.The characterization with TPO and Raman on spent catalysts exhibits that more hydrogen deficient coke forms on the support and less coke deposits on the metal surface of PtSn/B-ZrO2-10.The results reveal that the interaction between Pt and Sn is influenced by their respective interaction with the support and a moderate interaction between the metal species and the support is desired.展开更多
Industrial propane dehydrogenation(PDH)catalysts generally suffer from low catalytic stability due to the coke formation onto the catalyst surface to cover the active sites.The exploitation of an efficient catalyst wi...Industrial propane dehydrogenation(PDH)catalysts generally suffer from low catalytic stability due to the coke formation onto the catalyst surface to cover the active sites.The exploitation of an efficient catalyst with both high catalytic selectivity and long-term stability toward PDH is of great importance but challenging to make.Herein CrOx supported on high-silica HZSM-5 with a SiO2/Al2O3 ratio of 260(Cr/Z-5(260)is synthesized by a simple wet impregnation method,which exhibits high catalytic activity,good selectivity and excellent stability for PDH.At a weight hourly space velocity(WHSV)of 0.59 h-1,a propylene formation rate of 4.1 mmol g-1cath-1(~32.6% propane conversion and ~94.2% propylene selectivity)can be maintained over the 5%Cr/Z-5(260)catalyst after 50 h time on stream,which is much better than commercial Cr/Al2O3(Catofin process,catalyst life is several hours)at the same reaction conditions.With increasing the WHSV to 5.9 h-1,a high propylene formation rate of 27.9 mmol gcat-1h-1can be obtained over the 5%Cr/Z-5(260)catalyst after 50 h time on stream,demonstrating a very promising PDH catalyst.Characterization results and Na+doping experiments reveal that the Cr species combined with Br?nsted acid sites in Cr/HZSM-5 catalysts are responsible for the high catalytic performance.In particular,the Br?nsted acid sites in HZSM-5 zeolite could increase the propane adsorption and enhance the C–H bond activation.Furthermore,the high surface area and well-defined pores of HZSM-5 zeolite can provide a special environment for the dispersion and stabilization of Cr species,thus guaranteeing high catalytic activity and stability.展开更多
The alumina-modified SBA-15 (A12OJSBA-15) zeolite was prepared in a non-aqueous system by using toluene as the solvent, and was used to support the PtSn-based catalyst for propane dehydrogenation. The BET surface ar...The alumina-modified SBA-15 (A12OJSBA-15) zeolite was prepared in a non-aqueous system by using toluene as the solvent, and was used to support the PtSn-based catalyst for propane dehydrogenation. The BET surface area mea- surements, hydrogen chemisorption, FT-IR spectroscopy, NH3-TPD, XPS and TPO techniques were used to characterize the catalysts. Test results showed that the addition of alumina not only could modify the acid function of the support but also the structure of the metallic phase, thus affecting their catalytic properties. Among these catalysts studied, the PtSn/AI203 (5%)/ SBA-15 catalyst exhibited a best catalytic performance in terms of propane conversion and selectivity to propene. The high catalytic performance might be attributed to the relatively good Pt metal dispersion and/or the strong interaction between Pt and Sn species.展开更多
The influence of mischmetal addition on physicochcmical properties of PtSnNa/ZSM-5 catalyst was studied by means of XRF, H2 chemisorption, XRD, TPR, NH3-TPD and TPO techniques. The results showed that the presence of ...The influence of mischmetal addition on physicochcmical properties of PtSnNa/ZSM-5 catalyst was studied by means of XRF, H2 chemisorption, XRD, TPR, NH3-TPD and TPO techniques. The results showed that the presence of mischmetal had an obvious impact on the catalytic performance of the PtSnNa/ZSM-5 catalyst. A suitable content of mischmetal not only could enhance the interactions between Pt species and the support, but also inhibit the formation of coke during the reaction, thus improving the catalytic activity and stability. In our experiments, when the content of mischmetal was 3m%, the catalyst exhibited best catalytic performance. However, the continuous addition of mischmetal could promote the reduction of Sn species to metallic tin, which was disadvantageous to the reaction.展开更多
The La-ZSM-5 zeolite with different contents of La was synthesized by the hydrothermal method. The physico-chemical properties of the materials were studied. The results of FT-IR analyses indicated that La might be in...The La-ZSM-5 zeolite with different contents of La was synthesized by the hydrothermal method. The physico-chemical properties of the materials were studied. The results of FT-IR analyses indicated that La might be incorporated into the framework of ZSM-5 zeolite. The NH3-TPD analyses showed that the amount of weak acid sites of the zeolite decreased with a continuously increasing La content. Afterwards, the La-ZSM-5 zeolite was used as the support of PtSnNa catalyst for propane dehydrogenation. The test results revealed that the utilization of La- ZSM-5 zeolite could achieve a high propene conversion, and effectively inhibit the coke formation on the catalyst surface. When the content of La was 0.16%, the catalytic activity and stability of the catalyst got the best of its performance. Besides, the PtSnNa/La (0.16%)-ZSM-5 catalyst is more stable than the conventional PtSnNaLal ZSM-5 catalysts.展开更多
The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2- p...The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2- physisorption, and NH3-TPD analysis. The results showed that the alkali treatment can modify the physicochemical prop- erties of HZSM-5 zeolite. In this case, the porous material ATZ showed larger extemal surface area with less acid sites as compared to the HZSM-5 zeolite. It was found out that the alkali treatment of HZSM-5 zeolite could promote the catalytic performance of PtSn/ATZ catalyst. The possible reason was ascribed to the low acidity of ATZ. Furthermore, the presence of mesopores could reduce the carbon deposits on the metallic surface, which was also favorable for the dehydrogenation reaction.展开更多
Solid-state grinding is a simple and effective method to introduce guest species into the channels of microporous materials through filling.The structure and the surface acidity of the materials were obtained from BET...Solid-state grinding is a simple and effective method to introduce guest species into the channels of microporous materials through filling.The structure and the surface acidity of the materials were obtained from BET isotherms and NH3-TPD,respectively.XRD,UV-vis,UV diffuse-reflectance,and TEM were used to characterize the phases,and the morphology,respectively.The clustered layers of MgO-Al2O3phases were formed in the internal pore surface and were highly dispersed inside the channels of the ZSM-5 host.So the volume of MgO-Al2O3/ZSM-5 composite was larger than the ZSM-5 zeolite itself and some mesoporous channels appeared when Mg/Al species entered the channels.Meanwhile,new acid sites emerged in MgO-Al2O3/ZSM-5 composite and the acid amount of the sample changed.The improved Pt dispersion and the increased acid content would cause the increase of propane conversion and the modification of selectivity during the reaction.展开更多
PtSnNa/AlSBA-15 catalysts with different amounts of Sn were prepared for propane dehydrogenation.The catalysts were characterized by XRF,BET,H2 chemisorption,NH3-TPD,H2-TPR,and TPO techniques.Test results indicated th...PtSnNa/AlSBA-15 catalysts with different amounts of Sn were prepared for propane dehydrogenation.The catalysts were characterized by XRF,BET,H2 chemisorption,NH3-TPD,H2-TPR,and TPO techniques.Test results indicated that the presence of tin not only modified the acid function and the interfacial character between metal and support,but also reduced the coke deposition effectively.Among these catalysts investigated thereby,the PtSn(0.7%)Na/AlSBA-15 catalyst had the best catalytic performance in terms of propane conversion and stability.With the continuous addition of Sn,more amounts of Sn0 species appeared,which was unfavorable to the reaction.The PtSn(0.7%)Na/AlSBA-15 catalyst was parametrically characterized in order to obtain necessary information to integrate the process operating conditions.A weight hourly space velocity of 3 h-1,a reaction temperature of 610 ℃ and a H2/C3H8 molar ratio of 0.25 were found to be optimum conditions for achieving a higher dehydrogenation activity of the catalyst.展开更多
基金supported by the Jiangsu Planned Projects for Postdoctoral Research Funds(1301080C)NNSFC(21202141,21173182)+1 种基金Key Science&Technology Specific Projects of Yangzhou(YZ20122029)the Innovation Foundation of Yangzhou University(2015CXJ009)~~
文摘The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.
基金supported by the Municipal Natural Science Foundation of Tianjin(18JCJQJC47400,18JCZDJC37400)the National Postdoctoral Program for Innovative Talent(BX20200171)the Fundamental Research Funds for the Central Universities。
文摘Propane dehydrogenation(PDH)provides an alternative route to non-petroleum based propylene and eligible catalysts with good overall performance are still being explored.Herein,we report the construction of zeolite stabilized Pt-Zn catalysts Pt-Zn/Si-Beta for PDH.Characterization results from transmission electron microscopy(TEM),ultraviolet-visible(UV-vis)and Fourier transform infrared(FTIR)spectroscopy reveal that highly-dispersed Zn species are stabilized by the silanols from zeolite framework dealumination,which then act as the anchoring sites for Pt species.The close contact between Pt-Zn species and the electronic interaction thereof make Pt-Zn/Si-Beta robust PDH catalysts.Under optimized conditions,a high propylene production rate of 4.11 molmol_(Pt)^(-1)s^(-1),high propylene selectivity of 98% and a sustainable deactivation rate of~0.02 h^(-1)can be simultaneously achieved at 823 K.Coke deposition is not the key reason for the catalytic deactivation,while the loss of Zn species and the resulting aggregation of Pt species under high temperatures are responsible for the irreversible deactivation of Pt-Zn/Si-Beta catalyst in PDH reaction.
基金Supported by the National Natural Science Foundation of China(20736011) the Ministry of Education of China(IRT0721)
文摘A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke combustion.Simulation shows that under practical operating conditions,multi-steady states exist for the catalyst pellets and the catalyst temperature is sensitive to gas temperature.However,at increased mass flow rate or lowered oxygen concentration,multi-steady states will not appear.Under the strong influences of film diffusion,the coke in the packed bed reactor will first be exhausted at the inlet,while if the film diffusion resistance is decreased,the position of first coke exhaustion moves toward the outlet of the reactor.
基金National Natural Science Fund of China(22025203, 21872072)the Municipal Natural Science Fund of Tianjin (18JCJQJC47400) for supporting the work。
文摘Propane dehydrogenation(PDH), employing Pt-or Cr-based catalysts, represents an emerging industrial route for propylene production. Due to the scarcity of platinum and the toxicity of chromium, alternative PDH catalysts are being pursued. Herein, we report the construction of Zn-containing zeolite catalysts,namely Zn@S-1, for PDH reaction. Well-isolated zinc cations are successfully trapped and stabilized by the Si-OH groups in S-1 zeolites via in-situ hydrothermal synthesis. The as-prepared Zn@S-1 catalysts exhibit good dehydrogenation activity, high propylene selectivity, and regeneration capability in PDH reaction under employed conditions. The in-situ partial reduction of zinc species is observed and the partially reduced zinc cations are definitely identified as the active sites for PDH reaction.
基金supports provided by the Production and Research Prospective Joint Research Project (BY2009153)the Science and Technology Support Program (BE2008129)of jiansu Province of chinathe National Natural Science Foundation of China(50873026)
文摘PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.
基金supported by the Science & Technology Support Plan Projects of Sichuan Province (2016GZ0371)National Natural Science Foun-dation of China (NNSFC,21476145,21506111)~~
文摘A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was also prepared using a conventional impregnation method.The catalystswere characterized using various methods,and their activities in propane dehydrogenation wereinvestigated.The incorporation of Sn into the SBA‐15matrix led to strong interactions between Snspecies and the support,and these helped to maintain the oxidation states of Sn species during thereaction.Substitution with Sn changed the interfacial properties of the Pt species and improved thefunction and effect of the Sn promoter.The catalytic activities and stabilities of the Pt catalysts supportedon Sn‐incorporated SBA‐15were better than those of the impregnated sample.However,thecatalytic performance deteriorated when an excessive amount of Sn was introduced and the interactionsamong Pt,Sn species,and the support became weaker.The Pt/0.5Sn‐SBA‐15catalyst gavethe best propene selectivity,i.e.,98.5%,with a corresponding propane conversion of about43.8%.
基金Financial supports of the National Natural Science Foundation of China(21878050,91934301)the State Key Laboratory of Coal Conversion(J21-22-620)the 111 Project(D17005)。
文摘Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.
基金financially supported by the National Natural Science Foundation of China(21273049,22172037)the Guangdong Basic and Applied Basic Research Foundation(2021A1515010014)+1 种基金the Science and Technology Program of Guangzhou(201904010023)the CAS Key Laboratory of Renewable Energy(E029kf0901)。
文摘Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepared by an impregnation method using Pt(NH_(3))_(4)(NO_(3))_(2) as metal precursors. It has been found that the Pt/BN catalyst undergoing calcination and reduction is highly stable in both PDH reaction and coke-burning regeneration, together with low coke deposition and outstanding propylene selectivity(99%). Detailed characterizations reveal that the high coke resistance and high propylene selectivity of the Pt/BN catalyst are derived not only from the absence of acidity on BN support, but also from the calcination-induced and reduction-adjusted strong metal-support interaction(SMSI) between Pt and BN, which causes the partial encapsulation of Pt particles by BO_(x) overlayers. The BO_(x) overlayers can block the low-coordinated Pt sites and constrain Pt particles into smaller ensembles, suppressing side reactions such as cracking and deep dehydrogenation. Moreover, the BO_(x) overlayers can effectively inhibit Pt sintering by the spatial isolation of Pt during periodic reaction-regeneration cycles. In this work, the catalyst support for PDH is expanded to nonoxide BN, and the understanding of SMSI between Pt and BN will provide rational design strategy for BN-based catalysts.
基金supports of the National Natural Science Foundation of China(21878050,22178062)Foundation of State Key Labora-tory of Coal Conversion(J21-22-620)Green Petrochemical Engineering Base of Intelligence Introduction for Innovation(111 Project D17005)are gratefully acknowledged.
文摘A series of PtSn/hierarchical ZSM-5 catalysts were developed for propane dehydrogenation,in which the PtSn bimetallic particles are confined in the mesopores of hierarchical ZSM-5 zeolite.The synthesis of PtSn/hierarchical ZSM-5 catalysts was achieved via the loading of Pt and Sn species onto the hierarchical ZSM-5 catalysts that are obtained through a desilication of conventional ZSM-5.The PtSn/hierarchical ZSM-5 catalysts were fully characterized by XRD,N_(2) adsorption,STEM,XPS,and CO-IR techniques,which reveals that highly dispersed PtSn bimetallic nanoparticles are enclosed into mesopores of hierarchical ZSM-5.The catalytic performance of PtSn/hierarchical ZSM-5 is greatly affected by the concentrations of alkali solution in the desilication process and Sn/Pt ratios in PtSn bimetallic particles.The PtSn1.00/ZSM-5(0.8)catalyst shows the highest efficiency in propane dehydrogenation,which gives an initial conversion of 46%and selectivity of 98%at 570℃.The high efficiency in these PtSn/hierarchical ZSM-5 catalysts for propane dehydrogenation is mainly ascribed to the confinement of PtSn particles in the mesopores of hierarchical ZSM-5 zeolite.
基金The Production and Research Prospective Joint Research Project (BY2009153)The Science and Technology Support Program (BE2008129) of Jiangsu Province of Chinathe National Nature Science Foundation of China (50873026,21106017) for financial support
文摘PtSnSr/HZSM-5 catalysts with different amounts of strontium were prepared by sequential impregnation method, and characterized by BET analysis, TEM, NH3-TPD, Hz-TPR, TPO and TG techniques. The results showed that the addition of strontium could modify the characteristics and properties of both acid function and metal function of Pt-Sn-based cata- lysts. In this case, PtSnSr/HZSM-5 catalyst with an appropriate amount of Sr (1.2%) showed higher catalytic activity and lower amount of coke deposits than PtSn/HZSM-5 catalyst. However, excessive loading of Sr could facilitate the reduction of Sn, which was unfavorable to the reaction. Afterwards, 1.0 m% of Na was added into the PtSnSr(1.2%)/HZSM-5 catalyst to improve the catalytic performance in propane dehydrogenation, and this catalyst displayed the best catalytic performance during our experiments. After having been subjected to reaction for 5 h, the PtSnNa(1.0%)Sr(1,2%)/HZSM-5 catalyst had achieved a higher than 95% selectivity towards propene along with a corresponding propane conversion rate of 32.2%.
基金supported by the National Natural Science Foundation of China (Grant No. 50873026 and 21106017)the Production and Research Prospective Joint Research Project of Jiangsu Province of China (Grant No. BY2009153)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100092120047)
文摘The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM, XPS, NH3-TPD, H2 chemisorption, TPR and TPO techniques. It has been found that with suitable amount of cerium addition, the platinum dispersion increased, while the carbon deposition tended to be eliminated easily. In these cases, the presence of cerium could not only realize the better distribution of metallic particles on the support, but also strengthen the interactions between Sn species and the support. Additionally, XPS spectra confirmed that more amounts of tin could exist in oxidized form, which was advantageous to the reaction. In our experiments, PtSnNaCe (1.1 wt%)/ZSM-5 catalyst exhibited the best catalytic performance. After running the reaction for 750 h, propane conversion was maintained higher than 30% with the corresponding selectivity to propylene of about 97%.
基金supported by the National Key Research and Development Project(2018YFA0209404)the State Key Program of the National Natural Science Foundation of China(21733002)the National Natural Science Foundation of China(U1908203)。
文摘Alumina materials are widely applied either as a catalyst or support in various industrial catalytic processes. Impurities in alumina that are unfriendly to catalytic performance are inevitably present during the production processes. Facing this problem, we here report that the use of sulfur-containing alumina as the support can generate active alumina-supported platinum catalyst, which exhibits superior propylene selectivity and anti-coking ability during propane dehydrogenation. It demonstrated that the sulfur impurity in alumina is not entirely detrimental. During the reduction process, the formation of gas-phase sulfur species increased the electrons and poisoned unsaturated sites of platinum particles. The sulfur impurity in alumina can be removed through a hydrogen reduction process, and the degree of desulfurization is correlated with the operating temperature. This study demonstrated that the rational use of impurity will contribute to the design of a catalyst with high reactivity for potential applications.
文摘Boron-modified ZrO2(B-ZrO2)was synthesized under various pH values(9,10,and 11)and used as the supports of PtSn catalysts(PtSn/B-ZrO2-x)for non-oxidative dehydrogenation of propane.The NH3-TPD and pyridine IR show that only Lewis acid is present and the acid strength increases with the synthesis pH.PtSn/B-ZrO2-10 exhibits the best catalytic performance with an initial propane conversion of 36%and a deactivation rate constant(kd)of 0.0127 h^-1.The XPS results indicate that the electronic properties of Pt and SnOx are affected not only by their interaction but also by the interaction with support.After a careful analysis of the oxygen storage capacity and activity in CO oxidation,it is hypothesized that the interaction between Pt and Sn becomes stronger following the order:PtSn/B-ZrO2-9<PtSn/B-ZrO2-11<PtSn/B-ZrO2-10.The characterization with TPO and Raman on spent catalysts exhibits that more hydrogen deficient coke forms on the support and less coke deposits on the metal surface of PtSn/B-ZrO2-10.The results reveal that the interaction between Pt and Sn is influenced by their respective interaction with the support and a moderate interaction between the metal species and the support is desired.
基金supported by the National Natural Science Foundation of China (21421001, 21573115)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2017-K13)。
文摘Industrial propane dehydrogenation(PDH)catalysts generally suffer from low catalytic stability due to the coke formation onto the catalyst surface to cover the active sites.The exploitation of an efficient catalyst with both high catalytic selectivity and long-term stability toward PDH is of great importance but challenging to make.Herein CrOx supported on high-silica HZSM-5 with a SiO2/Al2O3 ratio of 260(Cr/Z-5(260)is synthesized by a simple wet impregnation method,which exhibits high catalytic activity,good selectivity and excellent stability for PDH.At a weight hourly space velocity(WHSV)of 0.59 h-1,a propylene formation rate of 4.1 mmol g-1cath-1(~32.6% propane conversion and ~94.2% propylene selectivity)can be maintained over the 5%Cr/Z-5(260)catalyst after 50 h time on stream,which is much better than commercial Cr/Al2O3(Catofin process,catalyst life is several hours)at the same reaction conditions.With increasing the WHSV to 5.9 h-1,a high propylene formation rate of 27.9 mmol gcat-1h-1can be obtained over the 5%Cr/Z-5(260)catalyst after 50 h time on stream,demonstrating a very promising PDH catalyst.Characterization results and Na+doping experiments reveal that the Cr species combined with Br?nsted acid sites in Cr/HZSM-5 catalysts are responsible for the high catalytic performance.In particular,the Br?nsted acid sites in HZSM-5 zeolite could increase the propane adsorption and enhance the C–H bond activation.Furthermore,the high surface area and well-defined pores of HZSM-5 zeolite can provide a special environment for the dispersion and stabilization of Cr species,thus guaranteeing high catalytic activity and stability.
基金the National Nature Science Foundation of China (50873026, 21106017)the Production and Research Prospective Joint Research Project (BY2009153)+1 种基金the Science and Technology Support Program (BE2008129) of Jiangsu Province of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education of China (20100092120047) for financial supports
文摘The alumina-modified SBA-15 (A12OJSBA-15) zeolite was prepared in a non-aqueous system by using toluene as the solvent, and was used to support the PtSn-based catalyst for propane dehydrogenation. The BET surface area mea- surements, hydrogen chemisorption, FT-IR spectroscopy, NH3-TPD, XPS and TPO techniques were used to characterize the catalysts. Test results showed that the addition of alumina not only could modify the acid function of the support but also the structure of the metallic phase, thus affecting their catalytic properties. Among these catalysts studied, the PtSn/AI203 (5%)/ SBA-15 catalyst exhibited a best catalytic performance in terms of propane conversion and selectivity to propene. The high catalytic performance might be attributed to the relatively good Pt metal dispersion and/or the strong interaction between Pt and Sn species.
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100092120047)the Production and Research Prospective Joint Research Project (No.BY2009153)the National Nature Science Foundation of China (No.50873026) for financial supports
文摘The influence of mischmetal addition on physicochcmical properties of PtSnNa/ZSM-5 catalyst was studied by means of XRF, H2 chemisorption, XRD, TPR, NH3-TPD and TPO techniques. The results showed that the presence of mischmetal had an obvious impact on the catalytic performance of the PtSnNa/ZSM-5 catalyst. A suitable content of mischmetal not only could enhance the interactions between Pt species and the support, but also inhibit the formation of coke during the reaction, thus improving the catalytic activity and stability. In our experiments, when the content of mischmetal was 3m%, the catalyst exhibited best catalytic performance. However, the continuous addition of mischmetal could promote the reduction of Sn species to metallic tin, which was disadvantageous to the reaction.
基金the National Nature Science Foundation of China(50873026)the Science and Technology Support Program of Jiangsu Province (BE2008129)the"Six Talents Pinnacle Program"of Jiangsu Province(06-A-033) for financial supports
文摘The La-ZSM-5 zeolite with different contents of La was synthesized by the hydrothermal method. The physico-chemical properties of the materials were studied. The results of FT-IR analyses indicated that La might be incorporated into the framework of ZSM-5 zeolite. The NH3-TPD analyses showed that the amount of weak acid sites of the zeolite decreased with a continuously increasing La content. Afterwards, the La-ZSM-5 zeolite was used as the support of PtSnNa catalyst for propane dehydrogenation. The test results revealed that the utilization of La- ZSM-5 zeolite could achieve a high propene conversion, and effectively inhibit the coke formation on the catalyst surface. When the content of La was 0.16%, the catalytic activity and stability of the catalyst got the best of its performance. Besides, the PtSnNa/La (0.16%)-ZSM-5 catalyst is more stable than the conventional PtSnNaLal ZSM-5 catalysts.
基金the Production and Research Prospective Joint Research Project(BY2009153)Science and the National Nature Science Foundation of China(50873026,21106017)for financial supportthe Specialized Research Fund for the Doctoral Program of Higher Education of China(20100092120047)
文摘The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2- physisorption, and NH3-TPD analysis. The results showed that the alkali treatment can modify the physicochemical prop- erties of HZSM-5 zeolite. In this case, the porous material ATZ showed larger extemal surface area with less acid sites as compared to the HZSM-5 zeolite. It was found out that the alkali treatment of HZSM-5 zeolite could promote the catalytic performance of PtSn/ATZ catalyst. The possible reason was ascribed to the low acidity of ATZ. Furthermore, the presence of mesopores could reduce the carbon deposits on the metallic surface, which was also favorable for the dehydrogenation reaction.
基金the financial supports of the National Natural Science Foundation of China(Grant No.21376051,21106017,21306023 and 51077013)the Natural Science Foundation of Jiangsu(Grant No.BK20131288)+3 种基金the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China(Grant No.BA2011086)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100092120047)the Key Program for the Scientific Research Guiding Fund of Basic Scientific Research Operation Expenditure of Southeast University(Grant No.3207043101)Instrumental Analysis Fund of Southeast University
文摘Solid-state grinding is a simple and effective method to introduce guest species into the channels of microporous materials through filling.The structure and the surface acidity of the materials were obtained from BET isotherms and NH3-TPD,respectively.XRD,UV-vis,UV diffuse-reflectance,and TEM were used to characterize the phases,and the morphology,respectively.The clustered layers of MgO-Al2O3phases were formed in the internal pore surface and were highly dispersed inside the channels of the ZSM-5 host.So the volume of MgO-Al2O3/ZSM-5 composite was larger than the ZSM-5 zeolite itself and some mesoporous channels appeared when Mg/Al species entered the channels.Meanwhile,new acid sites emerged in MgO-Al2O3/ZSM-5 composite and the acid amount of the sample changed.The improved Pt dispersion and the increased acid content would cause the increase of propane conversion and the modification of selectivity during the reaction.
基金the Production and Research Prospective Joint Research Project(BY2009153)the Science and Technology Support Program(BE2008129) of Jiangsu Province of Chinathe National Nature Science Foundation of China(50873026) for financial supports
文摘PtSnNa/AlSBA-15 catalysts with different amounts of Sn were prepared for propane dehydrogenation.The catalysts were characterized by XRF,BET,H2 chemisorption,NH3-TPD,H2-TPR,and TPO techniques.Test results indicated that the presence of tin not only modified the acid function and the interfacial character between metal and support,but also reduced the coke deposition effectively.Among these catalysts investigated thereby,the PtSn(0.7%)Na/AlSBA-15 catalyst had the best catalytic performance in terms of propane conversion and stability.With the continuous addition of Sn,more amounts of Sn0 species appeared,which was unfavorable to the reaction.The PtSn(0.7%)Na/AlSBA-15 catalyst was parametrically characterized in order to obtain necessary information to integrate the process operating conditions.A weight hourly space velocity of 3 h-1,a reaction temperature of 610 ℃ and a H2/C3H8 molar ratio of 0.25 were found to be optimum conditions for achieving a higher dehydrogenation activity of the catalyst.