期刊文献+
共找到557篇文章
< 1 2 28 >
每页显示 20 50 100
Influence of carbonization temperature on cobalt-based nitrogendoped carbon nanopolyhedra derived from ZIF-67 for nonoxidative propane dehydrogenation 被引量:1
1
作者 Yu-Ming Li Zi-Ye Liu +5 位作者 Qi-Yang Zhang Ya-Jun Wang Guo-Qing Cui Zhen Zhao Chun-Ming Xu Gui-Yuan Jiang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期559-568,共10页
Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-pu... Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance. 展开更多
关键词 propane dehydrogenation ZIF-67 Nitrogen-doped carbon COBALT
下载PDF
Effect of boron species on carbon surface on oxidative dehydrogenation of propane
2
作者 Tingcong Wang Mingyuan Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期310-317,共8页
Carbon catalysts for propane oxidative dehydrogenation(PODH)can potentially replace metal oxide catalysts due to their environmental friendliness(greenness)and excellent catalytic performance.Biomass carbon materials ... Carbon catalysts for propane oxidative dehydrogenation(PODH)can potentially replace metal oxide catalysts due to their environmental friendliness(greenness)and excellent catalytic performance.Biomass carbon materials have the advantages of being abundant in variety,inexpensive,and easily available,but their catalytic selectivity is relatively poor in PODH.Therefore,we report here on a boron-doped sisal fiber carbon catalyst,which showed excellent selectivity of propylene in PODH,excluding the effect of surface-covered B2O3 on the catalytic performance by hot water washing.The carbon material exhibited the best catalytic performance with a load of 2%(mass)and a calcination temperature of 1100℃.At a reaction temperature of 400℃,the conversion rate of propane was 2.0%,and the selectivity toward propylene reached 88.6%.The new chemical bonds formed by boron on the surface of the carbon materials had an important effect on the catalytic performance,as determined by XPS characterization.The BAO groups affected the catalytic activity by inhibiting the generation of electrophilic oxygen species,while the BAC content improved the selectivity toward propylene by changing the electron cloud density. 展开更多
关键词 BORON-DOPED Oxidative dehydrogenation propane SELECTIVITY
下载PDF
A mini review on oxidative dehydrogenation of propane over boron nitride catalysts
3
作者 Zhu Fu De-Zheng Li +5 位作者 Li-Dai Zhou Yu-Ming Li Jia-Wen Guo Yu-Qiao Li Hui-Min Liu Qi-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2488-2498,共11页
Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards... Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards propylene. Recently, it has been discovered that boron nitride (BN) is a promising catalyst that affords superior selectivity towards propylene in oxidative dehydrogenation of propane. Summarizing the progress and unravelling the reaction mechanism of BN in oxidative dehydrogenation of propane are of great significance for the rational design of efficient catalysts in the future. Herein, in this review, the underlying reaction mechanisms of oxidative dehydrogenation of propane over BN are extracted;the developed BN catalysts are classified into pristine BN, functionalized BN, supported BN and others, and the applications of each category of BN catalysts in oxidative dehydrogenation of propane are summarized;the challenges and opportunities on oxidative dehydrogenation of propane over BN are pointed out, aiming to inspire more studies and advance this research field. 展开更多
关键词 Oxidative dehydrogenation of propane Boron nitride PROPYLENE Reaction mechanism
下载PDF
Finned Zn-MFI zeolite encapsulated noble metal nanoparticle catalysts for the oxidative dehydrogenation of propane with carbon dioxide
4
作者 En-Hui Yuan Yiming Niu +7 位作者 Xing Huang Meng Li Jun Bao Yong-Hong Song Bingsen Zhang Zhao-Tie Liu Marc-Georg Willinger Zhong-Wen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期479-491,I0011,共14页
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin... Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix. 展开更多
关键词 Oxidative dehydrogenation propane Carbon dioxide Finned Zn-MFI zeolite Encapsulated noble metal nanoparticles
下载PDF
Sub-nanometer Pt_(2)In_(3) intermetallics as ultra-stable catalyst for propane dehydrogenation
5
作者 Yanan Xing Guiyue Bi +11 位作者 Xiaoli Pan Qike Jiang Yuanlong Tan Yang Su Leilei Kang Bonan Li Lin Li Aiqin Wang Jingyuan Ma Xiaofeng Yang Xiao Yan Liu Tao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期304-312,I0009,共10页
Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial ... Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking. 展开更多
关键词 propane dehydrogenation PROPYLENE Pt-In catalyst Intermetallic compounds Pt_(2)ln_(3)
下载PDF
PDH产业发展现状及预测
6
作者 王丽敏 隋谨伊 吕晓东 《石油石化绿色低碳》 CAS 2024年第1期13-16,77,共5页
全球约21%丙烷用于化工生产。由于北美等地C_(2)产业链利润高于C_(3),出口丙烷效益优于下游生产,北美和中东地区成为全球丙烷资源主要输出地。全球PDH装置产能的大幅增长也带动原料丙烷贸易增加,助力丙烷价格高位运行,同时需求增速保持... 全球约21%丙烷用于化工生产。由于北美等地C_(2)产业链利润高于C_(3),出口丙烷效益优于下游生产,北美和中东地区成为全球丙烷资源主要输出地。全球PDH装置产能的大幅增长也带动原料丙烷贸易增加,助力丙烷价格高位运行,同时需求增速保持低位。新增PDH装置主要来自中国,中国在2014—2016年经历了第一轮扩能高峰期,2019年开启第二轮PDH建设热潮。未来丙烯整体供应远超下游消费增速,过剩态势逐渐显现,直接影响PDH装置丙烯未来盈利水平。 展开更多
关键词 丙烷 pdh装置 丙烯 供应 需求 价格 毛利
下载PDF
Synthesis of a new ordered mesoporous NiMoO_4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane 被引量:7
7
作者 Xiaoqiang Fan Jianmei Li +4 位作者 Zhen Zhao Yuechang Wei Jian Liu Aijun Duan Guiyuan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期171-178,共8页
Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-... Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4. 展开更多
关键词 ----w 7ordered mesoporous structure NiMoO4 complex oxide vacuum nanocasting propane oxidative dehydrogenation
下载PDF
Effect of aluminum modification on catalytic properties of PtSn-based catalysts supported on SBA-15 for propane dehydrogenation 被引量:6
8
作者 Yongzheng Duan Yuming Zhou +3 位作者 Yiwei Zhang Xiaoli Sheng Shijian Zhou Zewu Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期207-214,共8页
The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15, such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15), for propane dehydrogenat... The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15, such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15), for propane dehydrogenation were investigated. Al2O3/SBA-15 was prepared either by an impregnation method using aluminum nitrate aqueous solution, or by the treatment of SBA-15 with a Al(OC3H7)3 solution in anhydrous toluene. N2-physisorption, FT-IR spectroscopy, solid-state 27Al MAS NMR spectroscopy, hydrogen chemisorption, XRF, NH3 temperature-programmed desorption, X-ray photoelectron spectroscopy and TPO were used to characterize these samples. Among these catalysts, the PtSn-based catalyst supported on Al2O3/SBA-15, which was grafted with Al(OC3H7)3, exhibited the best catalytic performance in terms of activity and stability The possible reason was due to the high Pt metal dispersion and/or the strong interactions among Pt, Sn, and the support. 展开更多
关键词 propane dehydrogenation Pt SBA-15 aluminum modification
下载PDF
Effect of cerium addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation 被引量:6
9
作者 Mengwei Xue Yuming Zhou +3 位作者 Yiwei Zhang Xuan Liu Yongzheng Duan Xiaoli Sheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期324-331,共8页
The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM,... The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM, XPS, NH3-TPD, H2 chemisorption, TPR and TPO techniques. It has been found that with suitable amount of cerium addition, the platinum dispersion increased, while the carbon deposition tended to be eliminated easily. In these cases, the presence of cerium could not only realize the better distribution of metallic particles on the support, but also strengthen the interactions between Sn species and the support. Additionally, XPS spectra confirmed that more amounts of tin could exist in oxidized form, which was advantageous to the reaction. In our experiments, PtSnNaCe (1.1 wt%)/ZSM-5 catalyst exhibited the best catalytic performance. After running the reaction for 750 h, propane conversion was maintained higher than 30% with the corresponding selectivity to propylene of about 97%. 展开更多
关键词 CERIUM Pt-Sn propane dehydrogenation CATALYST
下载PDF
Preparation of CeO_2-Modified Mg(Al)O-Supported Pt–Cu Alloy Catalysts Derived from Hydrotalcite-Like Precursors and Their Catalytic Behavior for Direct Dehydrogenation of Propane 被引量:5
10
作者 Yingxia Li Jiaxin Li +3 位作者 Xiao Yang Xitao Wang Yanhong Xu Lihong Zhang 《Transactions of Tianjin University》 EI CAS 2019年第2期169-184,共16页
A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were o... A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were obtained. To understand the effect of Cu and Ce, the structure and physico-chemistry properties of the catalysts were characterized and analyzed, and the catalytic behaviors were investigated in a direct dehydrogenation of propane to propene. The results show that the Pt^(4+), Cu^(2+), and Ce^(3+) ions can be incorporated into the brucite-like layers and the Ce content significantly affects the interaction strength between Pt and Cu and the dehydrogenation performance of propane. Under the reaction conditions, the highest propane conversion(45%) with 89% selectivity to propene and a 40% propene yield were achieved with a 0.3 wt% Ce-modified PtCu/Mg(Al)O catalyst. The improved catalytic performance is related to the easy formation of Pt–Cu alloy phase, excellent resistance to sintering, and coke deposits of active components modified by CeO_2. 展开更多
关键词 Ce modification Pt–Cu alloy propane dehydrogenation High dispersion Anti-sintering
下载PDF
Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts 被引量:4
11
作者 Lin Wang Wei Chu +3 位作者 Chengfa Jiang Yuefeng Liu Jie Wen Zaiku Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期43-48,共6页
In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed red... In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed reduction with H2 (H2-TPR), N2 adsorption-desolption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed for catalyst characterization. It is found that the activity of the catalysts for ODHP increases first and then decreases with the increase of Mo content. The catalyst with a Mo/Ni atomic ratio of 1/1 exhibits the best catalytic activity, which gives the propene selectivity of 81.4% at a propane conversion of 11.3% under 600 ~C and maintains the good catalytic performance for 22 h on stream. This is related not only to its high reducibility and dispersion as revealed by TPR and XRD, but also to the formation of more selective oxygen species on the MoOz-NiO interface as identified by XPS. 展开更多
关键词 nickel oxide molybdenum oxide mole ratio oxidative dehydrogenation of propane PROPENE
下载PDF
Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation 被引量:7
12
作者 Linjun Xie Yuchao Chai +4 位作者 Lanlan Sun Weili Dai Guangjun Wu Naijia Guan Landong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期92-98,I0003,共8页
Propane dehydrogenation(PDH)provides an alternative route to non-petroleum based propylene and eligible catalysts with good overall performance are still being explored.Herein,we report the construction of zeolite sta... Propane dehydrogenation(PDH)provides an alternative route to non-petroleum based propylene and eligible catalysts with good overall performance are still being explored.Herein,we report the construction of zeolite stabilized Pt-Zn catalysts Pt-Zn/Si-Beta for PDH.Characterization results from transmission electron microscopy(TEM),ultraviolet-visible(UV-vis)and Fourier transform infrared(FTIR)spectroscopy reveal that highly-dispersed Zn species are stabilized by the silanols from zeolite framework dealumination,which then act as the anchoring sites for Pt species.The close contact between Pt-Zn species and the electronic interaction thereof make Pt-Zn/Si-Beta robust PDH catalysts.Under optimized conditions,a high propylene production rate of 4.11 molmol_(Pt)^(-1)s^(-1),high propylene selectivity of 98% and a sustainable deactivation rate of~0.02 h^(-1)can be simultaneously achieved at 823 K.Coke deposition is not the key reason for the catalytic deactivation,while the loss of Zn species and the resulting aggregation of Pt species under high temperatures are responsible for the irreversible deactivation of Pt-Zn/Si-Beta catalyst in PDH reaction. 展开更多
关键词 propane dehydrogenation ZEOLITE Pt-Zn/Si-Beta DEACTIVATION
下载PDF
Kinetics of the Oxidative Dehydrogenation of Propane over a VMgO Catalyst 被引量:3
13
作者 L.Late E.A.Blekkan 《Journal of Natural Gas Chemistry》 CAS CSCD 2002年第1期33-42,共10页
The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550°C over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation... The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550°C over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation of propane to propylene. Selectivity to propylene up to about 60% was obtained at 10% conversion, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by-products were CO and CO2. The reaction rate of propane was found to be first order in propane and close to zero order in oxygen, which is in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbon as the rate determining step. The activation energy of the conversion of propane was found to be 122±6 kJ/mol. 展开更多
关键词 propane oxidative dehydrogenation VMgO KINETICS
下载PDF
Propane Dehydrogenation over a Commercial Pt-Sn/Al2O3 Catalyst for Isobutane Dehydrogenation: Optimization of Reaction Conditions 被引量:9
14
作者 Farnaz Tahriri Zangeneh, Saeed Sahebdelfar Mohsen Bahmani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第7期730-735,共6页
在丙烷的除氢作用的商业 Pt-Sn/Al2O3 isobutane 除氢作用催化剂的适用性被学习。催化剂表演测试在不同操作条件下面在一个改正床石英反应堆被执行。通常,作为因素改进丙烷变换减少丙烯选择,最大化丙烯产量的最佳的操作条件被期望。... 在丙烷的除氢作用的商业 Pt-Sn/Al2O3 isobutane 除氢作用催化剂的适用性被学习。催化剂表演测试在不同操作条件下面在一个改正床石英反应堆被执行。通常,作为因素改进丙烷变换减少丙烯选择,最大化丙烯产量的最佳的操作条件被期望。最佳的条件被试验性的设计方法获得。调查参数是温度,氢 / 烃(H2/HC ) 比率和空格速度,在三个层次被改变。抑制例如催化剂部件的危险性到 sintering 或阶段转变也被考虑。催化剂的活动,选择和稳定性被看作测量反应因素,当 space-time-yield (猪圈) 被看作由于它的商业利息要优化的变量时。16 摩尔杩牵獥愠摮琠'L 敬的一个猪圈? 展开更多
关键词 脱氢催化剂 丙烷脱氢 商业利益 异丁烷 反应条件 优化 最佳操作条件 丙烯收率
下载PDF
Promotion effect of sulfur impurity in alumina support on propane dehydrogenation 被引量:3
15
作者 Xin-Qian Gao Wen-Cui Li +3 位作者 Bin Qiu Jian Sheng Fan Wu An-Hui Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期332-339,I0009,共9页
Alumina materials are widely applied either as a catalyst or support in various industrial catalytic processes. Impurities in alumina that are unfriendly to catalytic performance are inevitably present during the prod... Alumina materials are widely applied either as a catalyst or support in various industrial catalytic processes. Impurities in alumina that are unfriendly to catalytic performance are inevitably present during the production processes. Facing this problem, we here report that the use of sulfur-containing alumina as the support can generate active alumina-supported platinum catalyst, which exhibits superior propylene selectivity and anti-coking ability during propane dehydrogenation. It demonstrated that the sulfur impurity in alumina is not entirely detrimental. During the reduction process, the formation of gas-phase sulfur species increased the electrons and poisoned unsaturated sites of platinum particles. The sulfur impurity in alumina can be removed through a hydrogen reduction process, and the degree of desulfurization is correlated with the operating temperature. This study demonstrated that the rational use of impurity will contribute to the design of a catalyst with high reactivity for potential applications. 展开更多
关键词 ALUMINA IMPURITY SULFUR PLATINUM propane dehydrogenation
下载PDF
Propane dehydrogenation catalyzed by in-situ partially reduced zinc cations confined in zeolites 被引量:4
16
作者 Linjun Xie Rui Wang +3 位作者 Yuchao Chai Xuefei Weng Naijia Guan Landong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期262-269,I0006,共9页
Propane dehydrogenation(PDH), employing Pt-or Cr-based catalysts, represents an emerging industrial route for propylene production. Due to the scarcity of platinum and the toxicity of chromium, alternative PDH catalys... Propane dehydrogenation(PDH), employing Pt-or Cr-based catalysts, represents an emerging industrial route for propylene production. Due to the scarcity of platinum and the toxicity of chromium, alternative PDH catalysts are being pursued. Herein, we report the construction of Zn-containing zeolite catalysts,namely Zn@S-1, for PDH reaction. Well-isolated zinc cations are successfully trapped and stabilized by the Si-OH groups in S-1 zeolites via in-situ hydrothermal synthesis. The as-prepared Zn@S-1 catalysts exhibit good dehydrogenation activity, high propylene selectivity, and regeneration capability in PDH reaction under employed conditions. The in-situ partial reduction of zinc species is observed and the partially reduced zinc cations are definitely identified as the active sites for PDH reaction. 展开更多
关键词 propane dehydrogenation Zinc catalysts Zn@S-1 In-situ reduction
下载PDF
Boosting selectivity and stability on Pt/BN catalysts for propane dehydrogenation via calcination & reduction-mediated strong metal-support interaction 被引量:3
17
作者 Yaoxin Wang Jiandian Wang +3 位作者 Ping Zheng Changyong Sun Junyin Luo Xiaowei Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期451-457,共7页
Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepa... Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepared by an impregnation method using Pt(NH_(3))_(4)(NO_(3))_(2) as metal precursors. It has been found that the Pt/BN catalyst undergoing calcination and reduction is highly stable in both PDH reaction and coke-burning regeneration, together with low coke deposition and outstanding propylene selectivity(99%). Detailed characterizations reveal that the high coke resistance and high propylene selectivity of the Pt/BN catalyst are derived not only from the absence of acidity on BN support, but also from the calcination-induced and reduction-adjusted strong metal-support interaction(SMSI) between Pt and BN, which causes the partial encapsulation of Pt particles by BO_(x) overlayers. The BO_(x) overlayers can block the low-coordinated Pt sites and constrain Pt particles into smaller ensembles, suppressing side reactions such as cracking and deep dehydrogenation. Moreover, the BO_(x) overlayers can effectively inhibit Pt sintering by the spatial isolation of Pt during periodic reaction-regeneration cycles. In this work, the catalyst support for PDH is expanded to nonoxide BN, and the understanding of SMSI between Pt and BN will provide rational design strategy for BN-based catalysts. 展开更多
关键词 Pt catalyst BN SMSI propane dehydrogenation SELECTIVITY STABILITY COKE Sintering
下载PDF
Intrinsic kinetics of oxidative dehydrogenation of propane in the presence of CO_2 over Cr/MSU-1 catalyst 被引量:2
18
作者 Haitao Liu Zhao Zhang Huiquan Li Qingze Huang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期311-317,共7页
The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinet... The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data. 展开更多
关键词 intrinsic kinetics propane carbon dioxide oxidative dehydrogenation Cr/MSU-1 catalyst
下载PDF
Pt-Sn clusters anchored at Al_(penta)^(3+) sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation 被引量:3
19
作者 Xinyue Zhu Tinghai Wang +3 位作者 Zhikang Xu Yuanyuan Yue Minggui Lin Haibo Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期293-301,共9页
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regenerat... Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment. 展开更多
关键词 propane dehydrogenation Pt catalyst REGENERATION Sinter-resistance
下载PDF
Modeling and Simulation of Coke Combustion Regeneration for Coked Cr2O3/Al2O3 Propane Dehydrogenation Catalyst 被引量:8
20
作者 张新平 隋志军 +1 位作者 周兴贵 袁渭康 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期618-625,共8页
A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke com... A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke combustion.Simulation shows that under practical operating conditions,multi-steady states exist for the catalyst pellets and the catalyst temperature is sensitive to gas temperature.However,at increased mass flow rate or lowered oxygen concentration,multi-steady states will not appear.Under the strong influences of film diffusion,the coke in the packed bed reactor will first be exhausted at the inlet,while if the film diffusion resistance is decreased,the position of first coke exhaustion moves toward the outlet of the reactor. 展开更多
关键词 脱氢催化剂 燃烧过程 再生过程 仿真结果 焦炭 丙烷 固定床反应器 焦化
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部