Carbon catalysts for propane oxidative dehydrogenation(PODH)can potentially replace metal oxide catalysts due to their environmental friendliness(greenness)and excellent catalytic performance.Biomass carbon materials ...Carbon catalysts for propane oxidative dehydrogenation(PODH)can potentially replace metal oxide catalysts due to their environmental friendliness(greenness)and excellent catalytic performance.Biomass carbon materials have the advantages of being abundant in variety,inexpensive,and easily available,but their catalytic selectivity is relatively poor in PODH.Therefore,we report here on a boron-doped sisal fiber carbon catalyst,which showed excellent selectivity of propylene in PODH,excluding the effect of surface-covered B2O3 on the catalytic performance by hot water washing.The carbon material exhibited the best catalytic performance with a load of 2%(mass)and a calcination temperature of 1100℃.At a reaction temperature of 400℃,the conversion rate of propane was 2.0%,and the selectivity toward propylene reached 88.6%.The new chemical bonds formed by boron on the surface of the carbon materials had an important effect on the catalytic performance,as determined by XPS characterization.The BAO groups affected the catalytic activity by inhibiting the generation of electrophilic oxygen species,while the BAC content improved the selectivity toward propylene by changing the electron cloud density.展开更多
Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards...Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards propylene. Recently, it has been discovered that boron nitride (BN) is a promising catalyst that affords superior selectivity towards propylene in oxidative dehydrogenation of propane. Summarizing the progress and unravelling the reaction mechanism of BN in oxidative dehydrogenation of propane are of great significance for the rational design of efficient catalysts in the future. Herein, in this review, the underlying reaction mechanisms of oxidative dehydrogenation of propane over BN are extracted;the developed BN catalysts are classified into pristine BN, functionalized BN, supported BN and others, and the applications of each category of BN catalysts in oxidative dehydrogenation of propane are summarized;the challenges and opportunities on oxidative dehydrogenation of propane over BN are pointed out, aiming to inspire more studies and advance this research field.展开更多
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin...Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.展开更多
Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand t...Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.展开更多
Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-...Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.展开更多
Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally ...Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.展开更多
The nV‐MCM‐41 catalysts were prepared by one‐step hydrothermal synthesis and applied to the oxidative dehydrogenation of propane(ODHP) in the presence of CO2. Several state‐of‐the‐art char‐acterization method...The nV‐MCM‐41 catalysts were prepared by one‐step hydrothermal synthesis and applied to the oxidative dehydrogenation of propane(ODHP) in the presence of CO2. Several state‐of‐the‐art char‐acterization methods were performed to explore the correlation between catalytic performance and the physicochemical characterizations of the catalysts. Because moderate amounts of V species were introduced into the framework of MCM‐41, the catalyst maintained a large specific surface area, a highly ordered mesoporous structure, and highly dispersed V active sites(monomeric and dimeric V oxide species), while the high‐vanadium‐doping catalysts caused an enhancement in the number of acidic sites and V2O5 crystallites. The ODHP reaction showed that the 6.8 V‐MCM‐41(V content 6.8 wt%) catalyst exhibits high activity and stability, and the C3H8/CO2 molar ratio(1:4) was suitable. The promoting effect of CO2 on the oxidative dehydrogenation of ODHP was demonstrated as the reaction coupling mechanism and "lattice oxygen" mechanism.展开更多
The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550°C over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation...The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550°C over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation of propane to propylene. Selectivity to propylene up to about 60% was obtained at 10% conversion, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by-products were CO and CO2. The reaction rate of propane was found to be first order in propane and close to zero order in oxygen, which is in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbon as the rate determining step. The activation energy of the conversion of propane was found to be 122±6 kJ/mol.展开更多
An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re- actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diame...An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re- actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefln over V2O5/γ-Al203 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa- rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100% conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run- away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl- ene production in an industrial scale reactor.展开更多
The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinet...The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data.展开更多
The oxidative dehydrogenation (ODH) of propane was conducted on gallium, aluminum, and chromium doped Si30VMgO catalysts. On doping, the concentrations of the phases responsible for the activity and selectivity incr...The oxidative dehydrogenation (ODH) of propane was conducted on gallium, aluminum, and chromium doped Si30VMgO catalysts. On doping, the concentrations of the phases responsible for the activity and selectivity increased in their concentrations. The reaction studies were conducted in a tubular steel reactor at temperatures of 753, 783, 813, and 843 K and atmospheric pressure. The total flow rates of the feed were chosen as 30, 40, 50, and 60 ml/min. The propane to oxygen ratios were chosen at 1 : 1, 2 : 1, and 3 : 1, respectively. The effect of various dopants on the activity and selectivity of the catalysts was studied. Deactivation studies were conducted over all the catalysts. The kinetic data were analyzed in terms of power law models and Langmuir-Hinshelwood (LH) models. The kinetic data results were analyzed by comparing the effect of dopants. Statistical model discrimination was done for the proposed models. AIC and BIC criteria were used for discrimination of the models.展开更多
Propane oxidative dehydrogenation(ODH)is an energy-efficient approach to produce propylene.However,ODH suff ers from low propylene selectivity due to a relatively higher activation barrier for propylene formation comp...Propane oxidative dehydrogenation(ODH)is an energy-efficient approach to produce propylene.However,ODH suff ers from low propylene selectivity due to a relatively higher activation barrier for propylene formation compared with that for further oxidation.In this work,calculations based on density functional theory were performed to map out the reaction pathways of propane ODH on the surfaces(001)and(010)of nickel oxide hydroxide(NiOOH).Results show that propane is physisorbed on both surfaces and produces propylene through a two-step radical dehydrogenation process.The relatively low activation barriers of propane dehydrogenation on the NiOOH surfaces make the NiOOH-based catalysts promising for propane ODH.By contrast,the weak interaction between the allylic radical and the surface leads to a high activation barrier for further propylene oxidation.These results suggest that the catalysts based on NiOOH can be active and selective for the ODH of propane toward propylene.展开更多
In-situ DRIFTS was used to study the deep oxidation of propane, a side reaction during propane oxidative dehydrogenation to propene. Strong adsorption of propene was supposed to be the main reason for the deep oxidati...In-situ DRIFTS was used to study the deep oxidation of propane, a side reaction during propane oxidative dehydrogenation to propene. Strong adsorption of propene was supposed to be the main reason for the deep oxidation. It was found that gaseous oxygen in the feed and the reaction temperature had great influence on the reaction. To obtain a relative high selectivity to propene, the reaction temperature should be maintained at 150-250℃ with a proper content of gaseous oxygen in the feed for a certain catalyst and some modifiers which could weaken the adsorption of propene on the catalyst surface would be favorable.展开更多
The dynamic structure of Mo-O species in Ag-Mo-P-O catalyst was studied by in situ confocal microprobe laser Raman spectroscopy (LRS) and catalytic test. The results indicate Mo-O species of MoO3 transformed to Mo-O ...The dynamic structure of Mo-O species in Ag-Mo-P-O catalyst was studied by in situ confocal microprobe laser Raman spectroscopy (LRS) and catalytic test. The results indicate Mo-O species of MoO3 transformed to Mo-O species of AgMoO2PO4 in C3H8/O2/N2 (3/1/4) flow at 773 K. This behavior is closely relative to oxidative dehydrogenation of propane and intrinsic properties of Mo-O species. The Mo-O species of AgMoO2PO4 may be active species for oxidative dehydrogenation of propane.展开更多
In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed red...In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed reduction with H2 (H2-TPR), N2 adsorption-desolption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed for catalyst characterization. It is found that the activity of the catalysts for ODHP increases first and then decreases with the increase of Mo content. The catalyst with a Mo/Ni atomic ratio of 1/1 exhibits the best catalytic activity, which gives the propene selectivity of 81.4% at a propane conversion of 11.3% under 600 ~C and maintains the good catalytic performance for 22 h on stream. This is related not only to its high reducibility and dispersion as revealed by TPR and XRD, but also to the formation of more selective oxygen species on the MoOz-NiO interface as identified by XPS.展开更多
An integrated approach combining the development of an innovative catalyst and the research of a set of adequate operating conditions for the propane oxidative dehydrogenation (ODH) is described.The experimental set...An integrated approach combining the development of an innovative catalyst and the research of a set of adequate operating conditions for the propane oxidative dehydrogenation (ODH) is described.The experimental set-up,specially designed for steady-state and transient studies is presented.The preparation method,the characterization and the performances in steady-state and transient regimes of catalysts based on V2W4O194-Lindqvist isopolyanion used as a precursor and supported on alumina are reported.The influence of the preparation method of the catalyst and the role of water in the feed gas are more particularly discussed.展开更多
Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of...Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of propene was much higher over CuCl and LiCl promoted VMgO catalysts than that over VMgO catalysts at the same reaction temperature.The highest yield of propene reached 23.1% at 500℃ and 6000h^(-1) space velocity.展开更多
The preparation of porous materials by the simple and low-cost methods is one of the hot topics in materials science.Here,the porous carbon-incorporated BN(P-CBN)was synthesized from the low-cost flour by a fermentati...The preparation of porous materials by the simple and low-cost methods is one of the hot topics in materials science.Here,the porous carbon-incorporated BN(P-CBN)was synthesized from the low-cost flour by a fermentation combined with freezedrying technology and ammonolysis.P-CBN-x samples not only maintain the pores of the fermented dough,but also produce abundant oxygen-containing boron species(B-OH,O-O and B-O).Due to the unique structural advantages,P-CBN-x catalysts exhibit remarkably better catalytic performance than bulk BN for the oxidative dehydrogenation of propane(ODHP)to produce olefins.Attractively,P-CBN-23 obtains high C_(3)H_(8 )conversion of 62.1%and olefin yield of 42.7%.In-situ DRIFTS experiments and DFT calculations demonstrate the B-OO-B species in P-CBN-x framework is the most active species for the C3H8activation and the B-O…O-B species can be readily regenerated by O_(2),thus promoting the conversion of propane to olefin.展开更多
A series ofnanosized cobalt oxide catalysts modified with phosphorus have been synthesized by the solgel method and investigated in the oxidative dehydrogenation of propane to propene. With the addition of phosphorus,...A series ofnanosized cobalt oxide catalysts modified with phosphorus have been synthesized by the solgel method and investigated in the oxidative dehydrogenation of propane to propene. With the addition of phosphorus, the crystallite size of the catalyst was largely decreased, while the P species in the catalyst were highly dispersed. Compared to pure cobalt oxide, the P-modified samples showed higher propane conversion and enhanced propene selectivity. Over the PCoO catalyst with a P/Co atomic ratio of 0.05, the maximal propene yields of 15.7% with a propane conversion of 28.3% were obtained at 520 ℃.展开更多
基金supported by the Taishan Scholars Program of Shandong Province(tsqn202103051).
文摘Carbon catalysts for propane oxidative dehydrogenation(PODH)can potentially replace metal oxide catalysts due to their environmental friendliness(greenness)and excellent catalytic performance.Biomass carbon materials have the advantages of being abundant in variety,inexpensive,and easily available,but their catalytic selectivity is relatively poor in PODH.Therefore,we report here on a boron-doped sisal fiber carbon catalyst,which showed excellent selectivity of propylene in PODH,excluding the effect of surface-covered B2O3 on the catalytic performance by hot water washing.The carbon material exhibited the best catalytic performance with a load of 2%(mass)and a calcination temperature of 1100℃.At a reaction temperature of 400℃,the conversion rate of propane was 2.0%,and the selectivity toward propylene reached 88.6%.The new chemical bonds formed by boron on the surface of the carbon materials had an important effect on the catalytic performance,as determined by XPS characterization.The BAO groups affected the catalytic activity by inhibiting the generation of electrophilic oxygen species,while the BAC content improved the selectivity toward propylene by changing the electron cloud density.
基金This work received financial support from the National Natural Science Foundation of China(21902116)Scientific Research Foundation of Technology Department of Liaoning province of China(2022-MS-379)Liaoning Revitalization Talents Program(XLYC1902070).
文摘Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards propylene. Recently, it has been discovered that boron nitride (BN) is a promising catalyst that affords superior selectivity towards propylene in oxidative dehydrogenation of propane. Summarizing the progress and unravelling the reaction mechanism of BN in oxidative dehydrogenation of propane are of great significance for the rational design of efficient catalysts in the future. Herein, in this review, the underlying reaction mechanisms of oxidative dehydrogenation of propane over BN are extracted;the developed BN catalysts are classified into pristine BN, functionalized BN, supported BN and others, and the applications of each category of BN catalysts in oxidative dehydrogenation of propane are summarized;the challenges and opportunities on oxidative dehydrogenation of propane over BN are pointed out, aiming to inspire more studies and advance this research field.
基金supported by the National Natural Science Foundation of China(21902097,21636006 and 21761132025)the China Postdoctoral Science Foundation(2019M653861XB)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JQ-409)the Fundamental Research Funds for the Central Universities(GK201901001 and GK202003035)。
文摘Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.
基金was supported by the National Natural Science Foundation of China(91545113,21703050)the China Postdoctoral Science Foundation(2017M610363,2018T110584)+2 种基金Shell Global Solutions International B.V.(PT71423,PT74557)the Fok Ying Tong Education Foundation(131015)the Science&Technology Program of Ningbo(2017C50014)~~
文摘Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.
基金supported by NSFC(21073235,21173270,21177160,21376261)863 Program(2013AA065302)PetroChina Innovation Foundation(2011D-5006-0403)
文摘Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.
文摘Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.
文摘The nV‐MCM‐41 catalysts were prepared by one‐step hydrothermal synthesis and applied to the oxidative dehydrogenation of propane(ODHP) in the presence of CO2. Several state‐of‐the‐art char‐acterization methods were performed to explore the correlation between catalytic performance and the physicochemical characterizations of the catalysts. Because moderate amounts of V species were introduced into the framework of MCM‐41, the catalyst maintained a large specific surface area, a highly ordered mesoporous structure, and highly dispersed V active sites(monomeric and dimeric V oxide species), while the high‐vanadium‐doping catalysts caused an enhancement in the number of acidic sites and V2O5 crystallites. The ODHP reaction showed that the 6.8 V‐MCM‐41(V content 6.8 wt%) catalyst exhibits high activity and stability, and the C3H8/CO2 molar ratio(1:4) was suitable. The promoting effect of CO2 on the oxidative dehydrogenation of ODHP was demonstrated as the reaction coupling mechanism and "lattice oxygen" mechanism.
文摘The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550°C over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation of propane to propylene. Selectivity to propylene up to about 60% was obtained at 10% conversion, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by-products were CO and CO2. The reaction rate of propane was found to be first order in propane and close to zero order in oxygen, which is in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbon as the rate determining step. The activation energy of the conversion of propane was found to be 122±6 kJ/mol.
文摘An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re- actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefln over V2O5/γ-Al203 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa- rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100% conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run- away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl- ene production in an industrial scale reactor.
基金supported by the National Natural Science Foundation of China (No. 21006109)the Postdoctoral Science Foundation of China (No. 20080430581)the CASKC Wang Post-Doctoral Fellowship
文摘The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data.
文摘The oxidative dehydrogenation (ODH) of propane was conducted on gallium, aluminum, and chromium doped Si30VMgO catalysts. On doping, the concentrations of the phases responsible for the activity and selectivity increased in their concentrations. The reaction studies were conducted in a tubular steel reactor at temperatures of 753, 783, 813, and 843 K and atmospheric pressure. The total flow rates of the feed were chosen as 30, 40, 50, and 60 ml/min. The propane to oxygen ratios were chosen at 1 : 1, 2 : 1, and 3 : 1, respectively. The effect of various dopants on the activity and selectivity of the catalysts was studied. Deactivation studies were conducted over all the catalysts. The kinetic data were analyzed in terms of power law models and Langmuir-Hinshelwood (LH) models. The kinetic data results were analyzed by comparing the effect of dopants. Statistical model discrimination was done for the proposed models. AIC and BIC criteria were used for discrimination of the models.
基金the National Natural Science Foundation of China(Nos.21873067 and 21576204).
文摘Propane oxidative dehydrogenation(ODH)is an energy-efficient approach to produce propylene.However,ODH suff ers from low propylene selectivity due to a relatively higher activation barrier for propylene formation compared with that for further oxidation.In this work,calculations based on density functional theory were performed to map out the reaction pathways of propane ODH on the surfaces(001)and(010)of nickel oxide hydroxide(NiOOH).Results show that propane is physisorbed on both surfaces and produces propylene through a two-step radical dehydrogenation process.The relatively low activation barriers of propane dehydrogenation on the NiOOH surfaces make the NiOOH-based catalysts promising for propane ODH.By contrast,the weak interaction between the allylic radical and the surface leads to a high activation barrier for further propylene oxidation.These results suggest that the catalysts based on NiOOH can be active and selective for the ODH of propane toward propylene.
基金supported by the National Natural Science Foundation of China (20576045)the Program for New Century Excellent Talentsin University (NCET-06-740)
文摘In-situ DRIFTS was used to study the deep oxidation of propane, a side reaction during propane oxidative dehydrogenation to propene. Strong adsorption of propene was supposed to be the main reason for the deep oxidation. It was found that gaseous oxygen in the feed and the reaction temperature had great influence on the reaction. To obtain a relative high selectivity to propene, the reaction temperature should be maintained at 150-250℃ with a proper content of gaseous oxygen in the feed for a certain catalyst and some modifiers which could weaken the adsorption of propene on the catalyst surface would be favorable.
文摘The dynamic structure of Mo-O species in Ag-Mo-P-O catalyst was studied by in situ confocal microprobe laser Raman spectroscopy (LRS) and catalytic test. The results indicate Mo-O species of MoO3 transformed to Mo-O species of AgMoO2PO4 in C3H8/O2/N2 (3/1/4) flow at 773 K. This behavior is closely relative to oxidative dehydrogenation of propane and intrinsic properties of Mo-O species. The Mo-O species of AgMoO2PO4 may be active species for oxidative dehydrogenation of propane.
基金supported by the National Natural Science Foundation of China (20776089)the New Century Excellent Talent Project of China(NCET-05-0783)
文摘In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed reduction with H2 (H2-TPR), N2 adsorption-desolption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed for catalyst characterization. It is found that the activity of the catalysts for ODHP increases first and then decreases with the increase of Mo content. The catalyst with a Mo/Ni atomic ratio of 1/1 exhibits the best catalytic activity, which gives the propene selectivity of 81.4% at a propane conversion of 11.3% under 600 ~C and maintains the good catalytic performance for 22 h on stream. This is related not only to its high reducibility and dispersion as revealed by TPR and XRD, but also to the formation of more selective oxygen species on the MoOz-NiO interface as identified by XPS.
基金supported by CNRS standing for Centre National de la Recherche Scientifique (France),CAPES standing for Coordenao de Aperfeioamento de Pessoal de Nível Superior (Brazil),CNPq standing for Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) and FINEP standing for Financiadora de Estudos e Projetos (Brazil)
文摘An integrated approach combining the development of an innovative catalyst and the research of a set of adequate operating conditions for the propane oxidative dehydrogenation (ODH) is described.The experimental set-up,specially designed for steady-state and transient studies is presented.The preparation method,the characterization and the performances in steady-state and transient regimes of catalysts based on V2W4O194-Lindqvist isopolyanion used as a precursor and supported on alumina are reported.The influence of the preparation method of the catalyst and the role of water in the feed gas are more particularly discussed.
文摘Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of propene was much higher over CuCl and LiCl promoted VMgO catalysts than that over VMgO catalysts at the same reaction temperature.The highest yield of propene reached 23.1% at 500℃ and 6000h^(-1) space velocity.
基金financially supported by the major research projects of National Natural Science Foundation of China(92145301,91845201)National Natural Science Foundation of China(22002093,22002094)+3 种基金Liaoning Provincial Central Government Guides Local Science and Technology Development Funds(2022JH6/100100052)The Engineering Technology Research Center of Catalysis for Energy and Environment,Major Platform for Science and Technology of the Universities in Liaoning ProvinceLiaoning Province Key Laboratory for Highly Efficient Conversion and Clean Utilization of Oil and Gas Resourcesthe Engineering Research Center for Highly Efficient Conversion and Clean Use of Oil and Gas Resources of Liaoning Province。
文摘The preparation of porous materials by the simple and low-cost methods is one of the hot topics in materials science.Here,the porous carbon-incorporated BN(P-CBN)was synthesized from the low-cost flour by a fermentation combined with freezedrying technology and ammonolysis.P-CBN-x samples not only maintain the pores of the fermented dough,but also produce abundant oxygen-containing boron species(B-OH,O-O and B-O).Due to the unique structural advantages,P-CBN-x catalysts exhibit remarkably better catalytic performance than bulk BN for the oxidative dehydrogenation of propane(ODHP)to produce olefins.Attractively,P-CBN-23 obtains high C_(3)H_(8 )conversion of 62.1%and olefin yield of 42.7%.In-situ DRIFTS experiments and DFT calculations demonstrate the B-OO-B species in P-CBN-x framework is the most active species for the C3H8activation and the B-O…O-B species can be readily regenerated by O_(2),thus promoting the conversion of propane to olefin.
基金supported by the National Basic Research Program of China(Nos.2010CB732303 and 2013CB933102)the National Natural Science Foundation of China(Nos.21073148 and 21033006)the Program for Innovative Research Team of the Ministry of Education of China(No.IRT1036)
文摘A series ofnanosized cobalt oxide catalysts modified with phosphorus have been synthesized by the solgel method and investigated in the oxidative dehydrogenation of propane to propene. With the addition of phosphorus, the crystallite size of the catalyst was largely decreased, while the P species in the catalyst were highly dispersed. Compared to pure cobalt oxide, the P-modified samples showed higher propane conversion and enhanced propene selectivity. Over the PCoO catalyst with a P/Co atomic ratio of 0.05, the maximal propene yields of 15.7% with a propane conversion of 28.3% were obtained at 520 ℃.