The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more dur...The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion,Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.展开更多
To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given...To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given out and the transition process from the helicopter mode to the airplane mode is designed. The lift system consists of a circular disk-wing with four retractable blades. The technology of individual blade control is adopted for flight control in hover and low speed flight. The tail is a vectored thrust duct propeller. It can provide the anti-torque in hover, and offer the multi-directional controls and propulsion drive for the airplane mode flight. The aerodynamic characteristics and key technologies in the transition process for this layout, including the nose up angle of disk-wing, the length of the blade, rotation speed, pitch angle and other parameters, are theoretically ana lyzed and experimentally tested. Calculation and experiments show that the shift process of the lift, the power and controls are smooth, and the designed scheme is feasible.展开更多
The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was propos...The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was proposed to achieve effective hovering control.The magnitude of the lateral force that was applied to maintain balance while hovering was examined.A comparison between the experimental and numerical results for the 16H-1 was made to verify the numerical simulation approach.The deflection devices of the X-49 and the proposed design were analyzed using numerical simulations.The results indicated that a larger lateral force and lower power consumption were presented in the proposed design.The results of this article provide a new idea for the design of the VTDP system.展开更多
基金The financial support of the Australian Research Council for this projectthe provision of an Australian Postgraduate Award
文摘The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion,Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.
文摘To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given out and the transition process from the helicopter mode to the airplane mode is designed. The lift system consists of a circular disk-wing with four retractable blades. The technology of individual blade control is adopted for flight control in hover and low speed flight. The tail is a vectored thrust duct propeller. It can provide the anti-torque in hover, and offer the multi-directional controls and propulsion drive for the airplane mode flight. The aerodynamic characteristics and key technologies in the transition process for this layout, including the nose up angle of disk-wing, the length of the blade, rotation speed, pitch angle and other parameters, are theoretically ana lyzed and experimentally tested. Calculation and experiments show that the shift process of the lift, the power and controls are smooth, and the designed scheme is feasible.
文摘The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was proposed to achieve effective hovering control.The magnitude of the lateral force that was applied to maintain balance while hovering was examined.A comparison between the experimental and numerical results for the 16H-1 was made to verify the numerical simulation approach.The deflection devices of the X-49 and the proposed design were analyzed using numerical simulations.The results indicated that a larger lateral force and lower power consumption were presented in the proposed design.The results of this article provide a new idea for the design of the VTDP system.