Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cros...Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cross-linked agent, SAPVA/PSF hollow fiber composite membranes were prepared for the dehydration of ethanol-water. The effects of different sodium alginate concentration in the coating solutions and different operating temperatures on pervaporation performance were investigated. The experimental results showed that pervaporation performance of the SA-PVA/PSF composite membranes for ethanol-water solution exhibited a high separation factor although they had a relatively low permeation flux. As SA concentration in SA-PVA coating solution was 66.7% and the operating temperature was 40 ℃, SA-PVA/PSF hollow fiber composite membrane (PS4) had a separation factor of 886 and flux of 12.6 g/(m^2·h). Besides, SA-PVA/PSF hollow fiber composite membranes (PS3 and PS4) were used for the investigation of the effect of ethanol concentration in the feed solution on pervaporation performance.展开更多
In order to improve the spinnabilities of A95 alumi- na silica sols, the influences of addition and polymeriza- tion degree of polyvinyl alcohol on spinnabilities of alu- mina silica sols were researched. The viscosit...In order to improve the spinnabilities of A95 alumi- na silica sols, the influences of addition and polymeriza- tion degree of polyvinyl alcohol on spinnabilities of alu- mina silica sols were researched. The viscosity and rheo- logical properties of the sols, mierostructure, infrared spectra, average diameter and diameter distribution oJ the gel fibers, BET specific surface area and distribution of pore diameters were measured. The results show that iJ there is no spinning agent, the A95 sols have no spinna- bility ; when PVA 2099 addition is in the range of l. 0% -2.0% (in mass, the same hereinafter) , the prepared sols have good spinnability, the gel fibers produced are thin and uniform, and the shot content is low ; BET spe- cific surface area and gas absorption amount of A95 polycrystalline alumina fibers are the largest when PVA 2099 addition is 2. 0% ; the gel fibers are thick and non-uniform, and the shot content is high when PVA 2099 addition is 4. 0% ; with polymerization degree oJ PVA increasing, the average diameter and diameter dis- tribution range of the gel fibers increase gradually; when using PVA 1799 and PVA 1899, respectively, the spun gel fibers are thin and uniform.展开更多
In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injecti...In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.展开更多
Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin imp...Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.展开更多
In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it i...In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae.展开更多
基金Project supported by the National Basic Research Program of China (Grant No.2003CB615705)
文摘Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cross-linked agent, SAPVA/PSF hollow fiber composite membranes were prepared for the dehydration of ethanol-water. The effects of different sodium alginate concentration in the coating solutions and different operating temperatures on pervaporation performance were investigated. The experimental results showed that pervaporation performance of the SA-PVA/PSF composite membranes for ethanol-water solution exhibited a high separation factor although they had a relatively low permeation flux. As SA concentration in SA-PVA coating solution was 66.7% and the operating temperature was 40 ℃, SA-PVA/PSF hollow fiber composite membrane (PS4) had a separation factor of 886 and flux of 12.6 g/(m^2·h). Besides, SA-PVA/PSF hollow fiber composite membranes (PS3 and PS4) were used for the investigation of the effect of ethanol concentration in the feed solution on pervaporation performance.
文摘In order to improve the spinnabilities of A95 alumi- na silica sols, the influences of addition and polymeriza- tion degree of polyvinyl alcohol on spinnabilities of alu- mina silica sols were researched. The viscosity and rheo- logical properties of the sols, mierostructure, infrared spectra, average diameter and diameter distribution oJ the gel fibers, BET specific surface area and distribution of pore diameters were measured. The results show that iJ there is no spinning agent, the A95 sols have no spinna- bility ; when PVA 2099 addition is in the range of l. 0% -2.0% (in mass, the same hereinafter) , the prepared sols have good spinnability, the gel fibers produced are thin and uniform, and the shot content is low ; BET spe- cific surface area and gas absorption amount of A95 polycrystalline alumina fibers are the largest when PVA 2099 addition is 2. 0% ; the gel fibers are thick and non-uniform, and the shot content is high when PVA 2099 addition is 4. 0% ; with polymerization degree oJ PVA increasing, the average diameter and diameter dis- tribution range of the gel fibers increase gradually; when using PVA 1799 and PVA 1899, respectively, the spun gel fibers are thin and uniform.
文摘In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.
文摘Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.
文摘In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae.