The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results s...The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results show that the optical intensity in the focal region can be altered considerably by changing the location of the vortices nested in a radially polarized Gaussian beam. It is noted that focal evolution from one annular focal pattern to a highly confined focal spot in the transverse direction is observed corresponding to the change in the location of the optical vortices in the input plane. It is also observed that the generated focal hole or spot lead to a focal shift along the optical axis remarkably under proper radial phase modulation. Hence the proposed system may be applied to construct tunable optical traps for both high and low refractive index particles.展开更多
Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair ...Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.展开更多
The composite axial insulation breaks (IBs) are key components of the supercon- ducting magnet system for the international thermonuclear experimental reactor (ITER). In order to ensure the safe operation of the I...The composite axial insulation breaks (IBs) are key components of the supercon- ducting magnet system for the international thermonuclear experimental reactor (ITER). In order to ensure the safe operation of the IBs during the 20 year lifespan of ITER devices, tensile and compressive fatigue tests were conducted by simulating actual working conditions and optimizing the test programs. The IBs were evaluated by testing their helium tightness after mechanical fatigue tests. In addition, fatigue analysis was performed using ANSYS software and an experi-mental S-N curve. The test data showed that the maximum helium leakage rate was less than 1.0×10^-9 Pc· m^3/s, which met the design requirements of the ITER IBs. ANSYS analysis results are also consistent with the test results from the theoretical viewpoint.展开更多
A partially coherent beam called a radially polarized multi-Gaussian Schell-model power-exponent-phase vortex beam is introduced. Both the analytical formula of the beam propagating through the high-numerical-aperture...A partially coherent beam called a radially polarized multi-Gaussian Schell-model power-exponent-phase vortex beam is introduced. Both the analytical formula of the beam propagating through the high-numerical-aperture objective lens based on the vectorial diffraction theory, and the cross-spectral density matrix of the beam in the focal region are derived. Then,the tight focusing characteristics of the partially coherent radially polarized power-exponent-phase vortex beam are studied numerically, and the intensity distribution, degree of polarization and coherence of the beams in the focusing region with different topological charge, power order, beam index and coherence width are analyzed in detail. The results show that the contour of the spot becomes clearer and smoother with the increase in the beam index, and the focal fields of different structures that include the flattened beam can be obtained by changing the coherence width. In addition, by changing the topological charge and power order, the intensity can gather to a point along the ring. These unique properties will have potential applications in particle capture and manipulation, especially in the manipulation of irregular particles.展开更多
We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are invest...We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by .vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.展开更多
文摘The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results show that the optical intensity in the focal region can be altered considerably by changing the location of the vortices nested in a radially polarized Gaussian beam. It is noted that focal evolution from one annular focal pattern to a highly confined focal spot in the transverse direction is observed corresponding to the change in the location of the optical vortices in the input plane. It is also observed that the generated focal hole or spot lead to a focal shift along the optical axis remarkably under proper radial phase modulation. Hence the proposed system may be applied to construct tunable optical traps for both high and low refractive index particles.
文摘Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.
基金supported by the Tokomak Design Division Center, Institute of Plasma Physics, Chinese Academy of Sciences
文摘The composite axial insulation breaks (IBs) are key components of the supercon- ducting magnet system for the international thermonuclear experimental reactor (ITER). In order to ensure the safe operation of the IBs during the 20 year lifespan of ITER devices, tensile and compressive fatigue tests were conducted by simulating actual working conditions and optimizing the test programs. The IBs were evaluated by testing their helium tightness after mechanical fatigue tests. In addition, fatigue analysis was performed using ANSYS software and an experi-mental S-N curve. The test data showed that the maximum helium leakage rate was less than 1.0×10^-9 Pc· m^3/s, which met the design requirements of the ITER IBs. ANSYS analysis results are also consistent with the test results from the theoretical viewpoint.
基金supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190953)。
文摘A partially coherent beam called a radially polarized multi-Gaussian Schell-model power-exponent-phase vortex beam is introduced. Both the analytical formula of the beam propagating through the high-numerical-aperture objective lens based on the vectorial diffraction theory, and the cross-spectral density matrix of the beam in the focal region are derived. Then,the tight focusing characteristics of the partially coherent radially polarized power-exponent-phase vortex beam are studied numerically, and the intensity distribution, degree of polarization and coherence of the beams in the focusing region with different topological charge, power order, beam index and coherence width are analyzed in detail. The results show that the contour of the spot becomes clearer and smoother with the increase in the beam index, and the focal fields of different structures that include the flattened beam can be obtained by changing the coherence width. In addition, by changing the topological charge and power order, the intensity can gather to a point along the ring. These unique properties will have potential applications in particle capture and manipulation, especially in the manipulation of irregular particles.
文摘We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by .vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.