期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Adaptive proportional integral differential control based on radial basis function neural network identification of a two-degree-of-freedom closed-chain robot
1
作者 陈正洪 王勇 李艳 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期457-461,共5页
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr... A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method. 展开更多
关键词 closed-chain robot radial basis function (RBF) neural network adaptive proportional integral differential (PID) control identification neural network
下载PDF
Fuzzy Self-adaptive Proportional Integration Differential Control for Attitude Stabilization of Quadrotor UAV 被引量:4
2
作者 范云生 曹亚博 +1 位作者 郭晨 王国峰 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期768-773,共6页
The technology of attitude control for quadrotor unmanned aerial vehicles(UAVs) is one of the most important UAVs' research areas.In order to achieve a satisfactory operation in quadrotor UAVs having proportional ... The technology of attitude control for quadrotor unmanned aerial vehicles(UAVs) is one of the most important UAVs' research areas.In order to achieve a satisfactory operation in quadrotor UAVs having proportional integration differential(PID) controllers,it is necessary to appropriately adjust the controller coefficients which are dependent on dynamic parameters of the quadrotor UAV and any changes in parameters and conditions could affect desired performance of the controller.In this paper,combining with PID control and fuzzy logic control,a kind of fuzzy self-adaptive PID control algorithm for attitude stabilization of the quadrotor UAV was put forward.Firstly,the nonlinear model of six degrees of freedom(6-DOF) for quadrotor UAV is established.Secondly,for obtaining the attitude of quadrotor,attitude data fusion using complementary filtering is applied to improving the measurement accuracy and dynamic performance.Finally,the attitude stabilization control simulation model of the quadrotor UAV is build,and the self-adaptive fuzzy parameter tuning rules for PID attitude controller are given,so as to realize the online self-tuning of the controller parameters.Simulation results show that comparing with the conventional PID controller,this attitude control algorithm of fuzzy self-adaptive PID has a better dynamic response performance. 展开更多
关键词 quadrotor unmanned aerial vehicle(UAV) data fusion attuade control juzzy selj-adaptive proportional integration differential(PID)
下载PDF
Proportion Integration Differentiation(PID)Control Strategy of Belt Sander Based on Fuzzy Algorithm
3
作者 陈坤 张亚伟 +1 位作者 张振 桂志伟 《Journal of Donghua University(English Edition)》 CAS 2023年第2期177-184,共8页
Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion ... Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified. 展开更多
关键词 grinding mechanism constant force control strategy fuzzy control proportion integration differentiation(PID)
下载PDF
Improved quantum bacterial foraging algorithm for tuning parameters of fractional-order PID controller 被引量:8
4
作者 LIU Lu SHAN Liang +2 位作者 DAI Yuewei LIU Chenglin QI Zhidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期166-175,共10页
The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is... The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system. 展开更多
关键词 bacterial foraging algorithm FRACTIONAL-ORDER quantum rotation gate proportion integration differentiation(PID) servo system
下载PDF
改进的神经网络PID在空调温度控制中的应用 被引量:1
5
作者 费春国 吴婷娜 《中国民航大学学报》 CAS 2022年第1期34-39,共6页
为提高候机楼中央空调温度控制水平,针对候机楼中央空调系统具有时滞性、扰动因素较多等特点,提出了一种基于改进天牛须搜索(IBAS,improved beetle antennae search)算法的模糊径向基函数(RBF,radial basis function)神经网络(PID,propo... 为提高候机楼中央空调温度控制水平,针对候机楼中央空调系统具有时滞性、扰动因素较多等特点,提出了一种基于改进天牛须搜索(IBAS,improved beetle antennae search)算法的模糊径向基函数(RBF,radial basis function)神经网络(PID,proportion integration differentiation)控制方法,建立了空调区域温度控制模型,通过模糊RBF神经网络实现PID参数在线整定,解决系统非线性、时变的问题。同时由于神经网络参数存在难以选取问题,提出利用天牛须搜索(BAS,beetle antennae search)算法优化模糊RBF神经网络参数的方法,并引入莱维飞行机制和变步长策略对BAS算法进行改进,提高其跳出局部最优的能力和稳定性。仿真结果表明,采用IBAS算法优化的模糊RBF神经网络PID控制方法有效提高了系统的鲁棒性和自适应能力,对候机楼中央空调系统具有良好的控制效果。 展开更多
关键词 候机楼中央空调系统 温度控制 IBAS(improved beetle antennae search)算法 模糊RBF(radial basis func-tion)神经网络 PID(proportion integration differentiation)参数整定
下载PDF
PID Neural Net work Decoupling Control Based on Hybrid Particle Swarm Optimization and Differential Evolution 被引量:2
6
作者 Hong-Tao Ye Zhen-Qiang Li 《International Journal of Automation and computing》 EI CSCD 2020年第6期867-872,共6页
For complex systems with high nonlinearity and strong coupling,the decoupling control technology based on proportion integration differentiation(PID)neural network(PIDNN)is used to eliminate the coupling between loops... For complex systems with high nonlinearity and strong coupling,the decoupling control technology based on proportion integration differentiation(PID)neural network(PIDNN)is used to eliminate the coupling between loops.The connection weights of the PIDNN are easy to fall into local optimum due to the use of the gradient descent learning method.In order to solve this problem,a hybrid particle swarm optimization(PSO)and differential evolution(DE)algorithm(PSO-DE)is proposed for optimizing the connection weights of the PIDNN.The DE algorithm is employed as an acceleration operation to help the swarm to get out of local optima traps in case that the optimal result has not been improved after several iterations.Two multivariable controlled plants with strong coupling between input and output pairs are employed to demonstrate the effectiveness of the proposed method.Simulation results show t hat the proposed met hod has better decoupling capabilities and control quality than the previous approaches. 展开更多
关键词 Particle swarm optimization differential evolution proportion integration differentiation(PID)neural network hybrid approach decoupling control.
原文传递
A digitally controlled PWM/PSM dual-mode DC/DC converter
7
作者 甄少伟 张波 +3 位作者 罗萍 侯思剑 叶璟欣 马骁 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第11期103-109,共7页
A digitally controlled pulse width modulation/pulse skip modulation (PWM/PSM) dual-mode buck DC/DC converter is proposed. Its operation mode can be automatically chosen as continuous conduction mode (CCM) or disco... A digitally controlled pulse width modulation/pulse skip modulation (PWM/PSM) dual-mode buck DC/DC converter is proposed. Its operation mode can be automatically chosen as continuous conduction mode (CCM) or discontinuous conduction mode (DCM). The converter works in PSM at DCM and in 2 MHz PWM at CCM. Switching loss is reduced at a light load by skipping cycles. Thus high conversion efficiency is realized in a wide load current. The implementations of PWM control blocks, such as the ADC, the digital pulse width modulator (DPWM) and the loop compensator, and PSM control blocks are described in detail. The parameters of the loop compensator can be programmed for different external component values and switching frequencies, which is much more flexible than its analog rivals. The chip is manufactured in 0.13 μm CMOS technology and the chip area is 1.21 mm^2. Experimental results show that the conversion efficiency is high, being 90% at 200 mA and 67% at 20 mA. Meanwhile, the measured load step response shows that the proposed dual-mode converter has good stability. 展开更多
关键词 digital power PSM ADC digital proportion integration differentiation DPWM BUCK
原文传递
Near Optimal PID Controllers for the Biped Robot While Walking on Uneven Terrains
8
作者 Ravi Kumar Mandava Pandu Ranga Vundavilli 《International Journal of Automation and computing》 EI CSCD 2018年第6期689-706,共18页
The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the ... The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the biped robot. It is important to note that the success of the developed proportion integration differentiation (PID) controller depends on the selected gains of the controller. In the present study, an attempt is made to tune the gains of the PID controller for the biped robot ascending and descending the stair case and sloping surface with the help of two non-traditional optimization algorithms, namely modified chaotic invasive weed optimization (MCIWO) and particle swarm optimization (PSO) algorithms. Once the optimal PID controllers are developed, a simulation study has been conducted in computer for obtaining the optimal tuning parameters of the controller of the biped robot. Finally, the optimal gait angles obtained by using the best controller are fed to the real biped robot and found that the biped robot has successfully negotiated the said terrains. 展开更多
关键词 Biped robot STAIRCASE sloping surface proportion integration differentiation (PID) controller modified chaotic invasive weed optimization (MCIWO) particle swarm optimization (PSO) algorithm.
原文传递
A Novel Popularity Extraction Method Applied inSession-Based Recommendation
9
作者 Yuze Peng Shengjun Xu +2 位作者 Qingkun Chen Wenjin Huang Yihua Huang 《Tsinghua Science and Technology》 SCIE EI CAS 2024年第4期971-984,共14页
Popularity plays a significant role in the recommendation system. Traditional popularity is only defined as a static ratio or metric (e.g., a ratio of users who have rated the item and the box office of a movie) regar... Popularity plays a significant role in the recommendation system. Traditional popularity is only defined as a static ratio or metric (e.g., a ratio of users who have rated the item and the box office of a movie) regardless of the previous trends of this ratio or metric and the attribute diversity of items. To solve this problem and reach accurate popularity, we creatively propose to extract the popularity of an item according to the Proportional Integral Differential (PID) idea. Specifically, Integral (I) integrates a physical quantity over a time window, which agrees with the fact that determining the attributes of items also requires a long-term observation. The Differential (D) emphasizes an incremental change of a physical quantity over time, which coincidentally caters to a trend. Moreover, in the Session-Based Recommendation (SBR) community, many methods extract session interests without considering the impact of popularity on interest, leading to suboptimal recommendation results. To further improve recommendation performance, we propose a novel strategy that leverages popularity to enhance the session interest (popularity-aware interest). The proposed popularity by PID is further used to construct the popularity-aware interest, which consistently improves the recommendation performance of the main models in the SBR community. For STAMP, SRGNN, GCSAN, and TAGNN, on Yoochoose1/64, the metric P@20 is relatively improved by 0.93%, 1.84%, 2.02%, and 2.53%, respectively, and MRR@20 is relatively improved by 3.74%, 1.23%, 2.72%, and 3.48%, respectively. On Movieslen-1m, the relative improvements of P@20 are 7.41%, 15.52%, 8.20%, and 20.12%, respectively, and that of MRR@20 are 2.34%, 12.41%, 20.34%, and 19.21%, respectively. 展开更多
关键词 popularity proportional integral differential(PID) algorithm session-based recommendation user’s interests
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部