期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Adaptive proportional integral differential control based on radial basis function neural network identification of a two-degree-of-freedom closed-chain robot
1
作者 陈正洪 王勇 李艳 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期457-461,共5页
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr... A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method. 展开更多
关键词 closed-chain robot radial basis function (RBF) neural network adaptive proportional integral differential pid control identification neural network
下载PDF
Trajectory tracking control of the bionic joint of the musculoskeletal leg mechanism
2
作者 雷静桃 Zhu Jianmin Wu Jiandong 《High Technology Letters》 EI CAS 2017年第2期117-124,共8页
Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by ... Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by PAMs.A 3-DOF musculoskeletal bionic leg mechanism is presented,which is driven by PAMs for quadruped robots.PAM is used to simulate the compliance of biological muscle.The kinematics of the leg swing is derived,and the foot desired trajectory is planned as the sinusoidal functions.The swing experiments of the musculoskeletal leg mechanism are conducted to analyse the extension and flexion of joints.A proportional integral derivative(PID) algorithm is presented for controlling the flexion/extension of the joint.The trajectory tracking results of joints and the PAM gas pressure are obtained.Experimental results show that the developed leg mechanism exhibits good biological properties. 展开更多
关键词 musculoskeletal leg mechanism SWING bionic joint trajectory tracking proportional integral derivative(pid) control
下载PDF
Automatic measurement of air-pressure sensor based on two-pressure control instrument
3
作者 丁红英 赵湛 +1 位作者 轩运动 方震 《Journal of Measurement Science and Instrumentation》 CAS 2013年第1期6-9,共4页
To measure the performance of high precision air-pressure sensors in below normal pressure,an automatic measurement instrument has been designed and implemented.It can simulate environment of low pressure from 300hPa ... To measure the performance of high precision air-pressure sensors in below normal pressure,an automatic measurement instrument has been designed and implemented.It can simulate environment of low pressure from 300hPa to 1 000hPa with high accuracy by proportional-integral-derivative(PID)control quickly,and it can also generate various relative humidity by two-pressure control.The results show that this instrument can reach controlled pressure quickly.And it works well with the minimum average pressure difference,and the fluctuation is±0.02hPa at 500hPa.And it can keep in a stable status for a long time.It works well in performance testing of pressure sensors.The structure of the system is simple,takes small investment,and can be operated conveniently. 展开更多
关键词 automatic measurement two-pressure pressure sensor proportional integral derivative(pid)control
下载PDF
Control of a 3-RRR Planar Parallel Robot Using Fractional Order PID Controller 被引量:2
4
作者 Auday Al-Mayyahi Ammar A.Aidair Chris Chatwin 《International Journal of Automation and computing》 EI CSCD 2020年第6期822-836,共15页
3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the s... 3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the state of the art.The operation of the mechanism is achieved based on three revolute(3-RRR)joints which are geometrically designed using an open-loop spatial robotic platform.The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints.The main variables in our design are the platform base positions,the geometry of the joint angles,and links of the 3-RRR planar parallel robot.These variables are calcula ted based on Cayley-Menger determinants and bilateration to det ermine the final position of the platform when moving and placing objects.Additionally,a proposed fractional order proportional integral derivative(FOPID)is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot.The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller.Furthermore,real-time implementation has been tested to prove that the design performance is practical. 展开更多
关键词 3-RRR planar parallel robot Cayley-Menger determinants inverse kinematic model bilateration fraction order proportional integral derivate(pid)controller bat optimization algorithm.
原文传递
Near Optimal PID Controllers for the Biped Robot While Walking on Uneven Terrains
5
作者 Ravi Kumar Mandava Pandu Ranga Vundavilli 《International Journal of Automation and computing》 EI CSCD 2018年第6期689-706,共18页
The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the ... The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the biped robot. It is important to note that the success of the developed proportion integration differentiation (PID) controller depends on the selected gains of the controller. In the present study, an attempt is made to tune the gains of the PID controller for the biped robot ascending and descending the stair case and sloping surface with the help of two non-traditional optimization algorithms, namely modified chaotic invasive weed optimization (MCIWO) and particle swarm optimization (PSO) algorithms. Once the optimal PID controllers are developed, a simulation study has been conducted in computer for obtaining the optimal tuning parameters of the controller of the biped robot. Finally, the optimal gait angles obtained by using the best controller are fed to the real biped robot and found that the biped robot has successfully negotiated the said terrains. 展开更多
关键词 Biped robot STAIRCASE sloping surface proportion integration differentiation pid controller modified chaotic invasive weed optimization (MCIWO) particle swarm optimization (PSO) algorithm.
原文传递
Design of an Executable ANFIS-based Control System to Improve the Attitude and Altitude Performances of a Quadcopter Drone 被引量:3
6
作者 Mohammad Al-Fetyani Mohammad Hayajneh Adham Alsharkawi 《International Journal of Automation and computing》 EI CSCD 2021年第1期124-140,共17页
Nowadays,quadcopters are presented in many life applications which require the performance of automatic takeoff,trajectory tracking,and automatic landing.Thus,researchers are aiming to enhance the performance of these... Nowadays,quadcopters are presented in many life applications which require the performance of automatic takeoff,trajectory tracking,and automatic landing.Thus,researchers are aiming to enhance the performance of these vehicles through low-cost sensing solutions and the design of executable and robust control techniques.Due to high nonlinearities,strong couplings and under-actuation,the control design process of a quadcopter is a rather challenging task.Therefore,the main objective of this work is demonstrated through two main aspects.The first is the design of an adaptive neuro-fuzzy inference system(ANFIS)controller to develop the attitude and altitude of a quadcopter.The second is to create a systematic framework for implementing flight controllers in embedded systems.A suitable model of the quadcopter is also developed by taking into account aerodynamics effects.To show the effectiveness of the ANFIS approach,the performance of a well-trained ANFIS controller is compared to a classical proportional-derivative(PD)controller and a properly tuned fuzzy logic controller.The controllers are compared and tested under several different flight conditions including the capability to reject external disturbances.In the first stage,performance evaluation takes place in a nonlinear simulation environment.Then,the ANFIS-based controllers alongside attitude and position estimators,and precision landing algorithms are implemented for executions in a real-time autopilot.In precision landing systems,an IR-camera is used to detect an IR-beacon on the ground for precise positioning.Several flight tests of a quadcopter are conducted for results validation.Both simulations and experiments demonstrated superior results for quadcopter stability in different flight scenarios. 展开更多
关键词 Quadcopter proportional integral derivate(pid)control fuzzy control adaptive neuro-fuzzy altitude control attitude control
原文传递
Some Investigations on Fuzzy P+Fuzzy I+Fuzzy D Controller for Non-stationary Process 被引量:1
7
作者 Vineet Kumar B. C. Nakra A. P. Mittal 《International Journal of Automation and computing》 EI 2012年第5期449-458,共10页
The paper addresses the adaptive behaviour of parallel fuzzy proportional plus fuzzy integral plus fuzzy derivative (FP+FI+FD) controller. The parallel FP+FI+FD controller is actually a non-linear adaptive controller ... The paper addresses the adaptive behaviour of parallel fuzzy proportional plus fuzzy integral plus fuzzy derivative (FP+FI+FD) controller. The parallel FP+FI+FD controller is actually a non-linear adaptive controller whose gain changes continuously with output of the process under control. Two non-stationary processes, whose characteristics change with time, are considered for simulation study. Simulation is performed using software LabVIEW TM . The set-point tracking response of parallel FP+FI+FD is compared with conventional parallel proportional plus integral plus derivative (PID) controller, tuned with the Ziegler-Nichols (Z-N) tuning technique. Simulation results show that conventional PID controller fails to track the set-point and becomes unstable as the process changes its characteristic with time. But the parallel FP+FI+FD controller shows considerably much better set-point tracking response and does not deviate from steady state. Also, a huge spike is observed in the output of PID controller as the reference set-point and process parameters are changed, while the FP+FI+FD controller gives spike free control signal. 展开更多
关键词 proportional plus integral plus derivative (pid) controller fuzzy proportional plus fuzzy integral plus fuzzy derivative (FP+FI+FD) controller non-stationary process adaptive control SELF-TUNING
原文传递
Design and analysis of control system using neural network for regulated DC power supply
8
作者 Z I DAFALLA Jihad Alkhalaf BANI-YOUNIS L K WAH 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第4期567-574,共8页
Conventional control systems used for regulated power supplies,including the proportional integral and derivation(PID)controller,have some serious disadvantages.The PID controller has a delayed feedback associated wit... Conventional control systems used for regulated power supplies,including the proportional integral and derivation(PID)controller,have some serious disadvantages.The PID controller has a delayed feedback associated with the control action and requires a lot of mathematical derivations.This paper presents a novel controlling system based on the artificial neural network(ANN),which can be used to regulate the output voltage of the DC power supply.Using MATLABTM,the designed control system was tested and analyzed with two types of back-propagation algorithms.This paper presents the results of the simulation that includes sum-squared error(SSE)and mean-squared error(MSE),and gives a detailed comparison of these values for the two algorithms.Hardware verification of the new system,using RS232 interface and Microsoft Visual Basic 6.0,was implemented,showing very good consistency with the simulation results.The proposed control system,compared to PID and other conventional controllers,requires less mathematical derivation in design and it is easier to implement. 展开更多
关键词 regulated power supply neural network proportional integral and derivation(pid)controller multi-layer perceptron(MLP)network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部