期刊文献+
共找到1,113篇文章
< 1 2 56 >
每页显示 20 50 100
DYNAMIC CHARACTERISTICS OF ELECTRO-HYDRAULIC PROPORTIONAL PRESSURE-FLOW HYBRID VALVE
1
作者 FU Linjian QIU Minxiu SHAO Ancen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期62-68,共7页
The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to t... The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to the structure principles under the two different working conditions, the transfer functions under such conditions are derived. With the transfer functions, some structure elements that may affect its performance, are investigated, afterwards some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The conclusions can be used to instruct engineering applications and products designing. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works. 展开更多
关键词 Electro-hydraulic pressure-flow hybrid valve Dynamic characteristics PQ valve
下载PDF
A New Kind of Pilot Controlled Proportional Direction Valve with Internal Flow Feedback 被引量:26
2
作者 QUAN Long XU Xiaoqing YAN Zheng ZHANG Xiaojun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期60-65,共6页
Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the ... Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the hydraulic actuator continuously. Considering the different application and the cost, the existing technique mainly includes the internal feedback valve used in open loop system, and the electronic closed loop controlled valve used in closed loop system. Because of their different mechanical structure and the gre at different in performance, it brings inconvenience for customer to select, also inconvenience for enterprise to produce. Aiming at this problem, the idea of combining the above two kinds of valves into one body is proposed first, and then the new valve's structure to realize this target is designed. The idea intends to apply the displacement pilot flow feedback control principle in present 2-position 2-way valve system to the proportional direction valve of 3-position 4-way system. Newly designed feed forward controller can decouple the interference between the internal feedback and the electronic closed loop. Redundant conversion is designed to electronic switch mode. Experiment on dynamic and static characteristic of new proportional direction valve in internal feedback control mode and electronic closed loop control mode is discussed to prove the new theory is correct. Although the new valve is of excellent dynamic response characteristic, its steady control characteristic in open loop control mode needs to be improved further. The research results prepare one new fundamental element for electronic-hydraulic control technology. 展开更多
关键词 pilot flow feedback proportional direction valve working principle characteristic research
下载PDF
RESEARCH ON THE PERFORMANCE OF NEW TYPE OF PROPORTIONAL PESSURE AND FLOW CONTROL VALVE 被引量:9
3
作者 Quan LongMa JianWang YongjinInstitute of Mechatronics,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期281-284,共4页
A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control... A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved. 展开更多
关键词 Electro-hydraulic proportional control proportional flow valve proportionalpressure valve pressure and flow compound control
下载PDF
DYNAMIC CHARACTERISTICS OF LARGE FLOW RATING ELECTROHYDRAULIC PROPORTIONAL CARTRIDGE VALVE 被引量:10
4
作者 FU Linjian WEI Jianhua QIU Minxiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期57-62,共6页
A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer fimction of the valve... A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer fimction of the valve is derived. With the transfer function, some structure elements that may affect its performance are investigated. Through the numerical simulation and test study, some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works. The paper provides theoretical basis for engineering applications and series expanding design works 展开更多
关键词 Large flow rate electro-hydraulic proportional cartridge valve Dynamic characteristics
下载PDF
Flow Control for a Two-Stage Proportional Valve with Hydraulic Position Feedback 被引量:7
5
作者 He Wang Xiaohu Wang +1 位作者 Jiahai Huang Long Quan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期64-76,共13页
The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttl... The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable. 展开更多
关键词 flow control proportional valve Hydraulic position feedback Back-propagation neural network
下载PDF
Effect of Radial Resistance Gap on the Pressure Drop of a Compact Annular-Radial-Orifice Flow Magnetorheological Valve 被引量:4
6
作者 Guoliang Hu Jiawei Zhang +1 位作者 Mingke Liao Ruqi Ding 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期535-546,共12页
A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single a... A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm. 展开更多
关键词 magnetorheological(MR)valve annular-radial-orifice flow pressure drop radial resistance gap finite element analysis
下载PDF
Development of a Novel Parallel-spool Pilot Operated High-pressure Solenoid Valve with High Flow Rate and High Speed 被引量:6
7
作者 DONG Dai LI Xiaoning 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期369-378,共10页
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a... High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate. 展开更多
关键词 high-pressure pneumatic solenoid valve parallel-spool high flow rate high speed opening response time
下载PDF
New Dead⁃zone Compensation Approach for Proportional Flow Valve
8
作者 Qiang Wu Xingyu Ji +2 位作者 He Wang Huimin Hao Jiahai Huang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第1期45-56,共12页
To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spo... To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback. 展开更多
关键词 proportional flow valve flow dead⁃zone dead⁃zone compensation pressure drop
下载PDF
Lumped Parameter Mass Flow Rate and Pressure Control Characteristics Model for High-Speed Pneumatic PWM on/off Valve
9
作者 向忠 胡旭东 +1 位作者 刘昊 汝晶炜 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期293-303,共11页
Aiming at solving the problem of strong coupling characteristic of the key parameters of high-speed pneumatic pulse width modulation( PWM) on / off valve, a general lumped parameter mathematical model based on the val... Aiming at solving the problem of strong coupling characteristic of the key parameters of high-speed pneumatic pulse width modulation( PWM) on / off valve, a general lumped parameter mathematical model based on the valves time periods was well developed. With this model,the mass flow rate and dynamic pressure characteristics of constant volumes controlled by high-speed pneumatic PWM on /off valves was well described. A variable flow rate coefficient model was proposed to substitute for the constant one used in most of the prior works to investigate PWM on /off valves' dynamical pressure response, and a formula for disclosing the inherent relationship among the PWM command signal,static mass flow rate,and sonic conductance of the valve was newly derived.Finally,an extensive set of analytical experimental comparisons were implemented to verify the validity of the proposed mathematica model. With the proposed model, PWM on /off valves' characteristics,such as mass flow rate,step pressure response of the valve control system,mean pressure and ripple amplitude,not only in the linear range,but also in the nonlinear range can be wel predicted; Good agreement between measured and calculated results was obtained,which proved that the model is helpful for designing a control strategy in a closed loop control system. 展开更多
关键词 lumped parameter model pneumatic on/off valve pulse width modulation(PWM) mass flow rate pressure characteristic
下载PDF
STUDY ON VARIATION OF SETTING AND STOPPING PRESSURES OF SAFETY VALVE WITH STRUCTURAL MODIFICATION 被引量:1
10
作者 Lee Jinho Kwangzin Valve Industrial Co ,Ltd,Korea Kim Harkbong Kim Moonsang School of Aerospace and Mechanical Engineering,Hankook Aviation University,Korea 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第2期127-138,共12页
The possibility of pressure control with the structural change of a safety valve is investigated Safety valve is commonly used as safety devices for numerous applications which include boilers,ships,industrial plant... The possibility of pressure control with the structural change of a safety valve is investigated Safety valve is commonly used as safety devices for numerous applications which include boilers,ships,industrial plants,and piping Setting and stopping pressures of a safety valve, p set and p sto ,are traditionally adjusted with a fine tuning of seat ring and valve ring heights, h sr and h vr However, it is not easy to achieve the proper setting and stopping pressures of a safety valve in practice The depth of inside and outside grooves in a valve, d i and d o are modified and their effects on setting and stopping pressures of a safety vlave are tested The most appropriate values appear 1 0 mm in d i and 0 5~1 0 mm in d o,respectively The valve ring height, h vr ,shows that the best results can be achieved at 2 3 mm for setting pressures of 0 1~0 4 MPa and 1 0 mm for setting pressures of 0 5~1 0 MPa The stopping pressures increases with the increase of seat ring height, h sr , upto certain h sr value and then becomes independent to the seat ring height This implies that there exists the optimum h sr ,which provides the largest flow rate and the proper stopping pressure Stopping pressures of a safety valve are adjusted with the seat ring and valve ring heights This study,however,demonstrated that the modification of value grooves also changes setting and stopping pressures of a safety valve Therefore,the proper selection in dimensions of the inside and outside grooves should be considered for the safety valve design 展开更多
关键词 Safety valve Compressive flow Isentropic flow theory Isentropic comressibility theory Setting pressure Stopping pressure Continuity equation Momentum equation
下载PDF
Structure optimization and flow field simulation of plate type high speed on-off valve 被引量:7
11
作者 WANG Xiao-jing LI Wen-jie +1 位作者 LI Chun-hui PENG Yi-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第5期1557-1571,共15页
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte... There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate. 展开更多
关键词 high speed on-off valve flow field simulation pressure and flow characteristics
下载PDF
Experimental study on the particle flow patterns in a cyclone dipleg with a trickle valve
12
作者 Chao-Yu Yan Guo-Gang Sun +2 位作者 Jian-Yi Chen Yao-Dong Wei Chun-Xi Lu 《Petroleum Science》 SCIE CAS CSCD 2020年第3期822-837,共16页
An experimental apparatus including a dipleg and a trickle valve was established to simulate the operation of a suspended dipleg-trickle valve system of cyclone used in fluid catalytic cracking(FCC)unit.The flow regim... An experimental apparatus including a dipleg and a trickle valve was established to simulate the operation of a suspended dipleg-trickle valve system of cyclone used in fluid catalytic cracking(FCC)unit.The flow regimes in the dipleg and the discharge modes in the trickle valve were studied by combining the observation of experimental phenomena with the analysis of transient pressure fluctuation.The results show that the flow regimes in the dipleg have two types-the dilute–dense phase coexisting falling flow and the dilute falling flow.Correspondingly,the trickle valve also has two discharge modes-the intermittent periodic dumping discharge and the continuous trickling discharge.The power spectrum density of pressure fluctuation displays that the gas–solids flow in the dipleg-trickle valve system is characterized by a low-frequency pulsation.The coherence coefficient explains the origin and propagation of pressure fluctuation in the system.Eventually,a map describing the flow regimes and discharge modes related to the operation parameters was proposed,which can provide a helpful guidance for the operation of cyclone dipleg-trickle valve system in FCC unit. 展开更多
关键词 Cyclone dipleg Trickle valve flow regime Discharge mode pressure fluctuation
下载PDF
Structure Optimization and Performance Analysis of a Multiple Radial Magnetorheological Valve 被引量:3
13
作者 Guoliang Hu Fang Zhong +1 位作者 Haiyun Zhang Ruqi Ding 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期458-467,共10页
Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of tw... Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of two annular fluid flowchannels,four radial fluid flow channels and three centric pipe fluid flowchannels. The working principle of the multiple radial MR valve was introduced in detail,and the structure optimization design was carried out using ANSYS software to obtain the optimal structure parameters. Moreover,the optimized MR valve was compared with preoptimized MR valve in terms of their magnetic flux density of radial fluid resistance gap and performance of pressure drop. The experimental test rig was set up to investigate the performance of pressure drop of the proposed MR valve under different currents applied and different loading cases. The results showthat the pressure drop between the inlet and outlet port could reach 5. 77 MPa at the applied current of 0. 8 A. Furthermore,the experimental results also indicate that the loading cases had no effect on the performance of pressure drop. 展开更多
关键词 magnetorheological MR valve multiple radial flow optimization design pressure drop
下载PDF
Pressure Control of a Large-scale Hydraulic Power Unit Using π Bridge Network 被引量:3
14
作者 FENG Bin GONG Guofang YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期386-391,共6页
The steady state and dynamic characteristics of pressure output of a hydraulic power unit are important to the hydraulic system behavior.Because of the compact structure,the B-half bridge resistance network is widely ... The steady state and dynamic characteristics of pressure output of a hydraulic power unit are important to the hydraulic system behavior.Because of the compact structure,the B-half bridge resistance network is widely used in the pilot controlled pressure relief valves.However the steady-state pressure error might be unacceptably big in those pressure control systems.A constant pressure power unit is typically assumed in analysis of steady state and dynamic behavior of hydraulic systems.The flow-pressure relationship seems to be much complex,in particular when big flow variation takes place.In this paper,the π bridge hydraulic resistance network pilot stage is designed in order to get better flow-pressure characteristics.Based on the similarity of electrical circuits,the main factors influencing flow-pressure characteristics are analyzed.Moreover,the optimum diameters of both constant hydraulic resistor and dynamic resistor are proposed.Flow-pressure characteristics are compared with different constant hydraulic resistors,dynamic resistor and spring stiffness by simulations and experiments.Results of simulations and experiments show that flow-pressure characteristics depend very little on the spring stiffness in whole flow range.Good controlled pressure characteristics can be achieved with suitable constant resistors.Overshoot can be reduced with the small diameter of the dynamic resistor.Flow-pressure characteristics of pressure relief valve can be improved with a π bridge pilot stage.The proposed pressure control method will provide some positive guidelines and be helpful to design a high performance hydraulic system with large flow. 展开更多
关键词 two stage pressure relief valve π bridge resistor network flow-pressure characteristics
下载PDF
An Analysis of the Static and Dynamic Behavior of the Hydraulic Compensation System of a Multichannel Valve
15
作者 Jikang Xu Ruichuan Li +5 位作者 Yi Cheng Yanchao Li Junru Yang Chenyu Feng Xinkai Ding Huazhong Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1817-1836,共20页
Electro-hydraulic proportional valve is the core control valve in many hydraulic systems used in agricultural and engineering machinery.To address the problem related to the large throttling losses and poor stability ... Electro-hydraulic proportional valve is the core control valve in many hydraulic systems used in agricultural and engineering machinery.To address the problem related to the large throttling losses and poor stability typically associated with these valves,here,the beneficial effects of a triangular groove structure on the related hydraulic response are studied.A mathematical model of the pressure compensation system based on the power-bond graph method is introduced,and the AMESim software is used to simulate its response.The results show that the triangular groove structure increases the jet angle and effectively compensates for the hydrodynamic force.The steady-state differential pressure at the valve port of the new pressure compensation structure was 0.65 MPa.Furthermore,experimental results show that the pressure difference at the main valve port is 0.73 MPa,and that the response time is less than 0.2 s.It is concluded that the new compensation structure has good pressure compensation response characteristics. 展开更多
关键词 Electrohydraulic proportional valve spool shape pressure compensation valve port differential pressure response time
下载PDF
Pressure Pulse Response of High Temperature Molten Salt Check Valve Hit by Crystal Particles
16
作者 李树勋 沈恒云 +2 位作者 刘斌才 胡迎港 马廷前 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期271-279,共9页
In view of the problem that crystalline particles cause wall vibration at a low temperature,based on two-phase flow model,computational fuid dynamics is used to conduct the numerical simulation of internal flows when ... In view of the problem that crystalline particles cause wall vibration at a low temperature,based on two-phase flow model,computational fuid dynamics is used to conduct the numerical simulation of internal flows when the valve openings are 20%,60%and 100%respectively.The molten salt fow may be changed under strict conditions and produce forced vibration of the inner parts of molten salt particle shock valve body.Euler two-phase flow model is used for different molten salt sizes to extract temporal pressure pulse information and conduct statistical data processing analysis.The influence of the molten salt crystallization of molten salt particles on the fow and pressure pulse strength is analyzed.The results show that the crystallization of molten salt has a serious impact on the vibration of the valve body,especially in the throttle rate.The valve oscillation caused by the pressure pulsation mostly occurs from the small opening rate.As the opening increases,the pressure pulse threshold and its change trend decrease. 展开更多
关键词 molten salt valve numerical simulation pressure pulsation two-phase flow crystal frozen blocking
原文传递
Methodology for expressing the flow coefficients of coupled throttling grooves in a proportional–directional valve 被引量:8
17
作者 Xiao-lu ZHANG An-lin WANG +2 位作者 Wei CHEN Long KUANG Tao JIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第10期799-816,共18页
Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flo... Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flow coefficient of coupled throttling grooves is proposed to resolve that difficulty.With this purpose,an approach of a 3 D numerical simulation and an experimental bench were introduced based on the prototype of a commercial proportional valve.The results show consistency between the numerical simulation and the bench test.Based on that,the concept of‘saturation limit’is introduced to describe the value gap between the current and saturated flows,so that the flow-coefficient saturation limit of the prototype in the process can be deducted.Accordingly,an approximate flow coefficient suitable for coupled throttling grooves within finite variable space,which is based on three typical throttling structures(i.e.O-shape,U-shape,and C-shape)of the coupled throttling grooves,is obtained based on an orthogonal test.The model results are consistent with the numerical and experimental results,with maximum errors of less than 5.29%and 5.34%,respectively.This suggests that the proposed method is effective in approximating the flow coefficient. 展开更多
关键词 flow coefficient proportional–directional valve Coupled throttling grooves Saturated flow
原文传递
Development of a novel two-stage proportional valve with a pilot digital flow distribution 被引量:2
18
作者 Qiang GAO Yuchuan ZHU +1 位作者 Changwen WU Yulei JIANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第2期420-434,共15页
Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel t... Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel two-stage proportional valve with a pilot digital flow distribution is proposed from the viewpoint of the dual nozzle-flapper valve’s working principle. In particular, the dual nozzle-flapper is decoupled by two high-speed on/off valves (HSVs). First, the working principle and mathematical model of the proposed valve are determined. Then, the influences of the control parameters (duty cycle and switching frequency) and structural parameters (fixed orifice’s diameter and main valve’s spring) on the main valve’s motion are analyzed on the basis of theory, simulation, and experiment. In addition, in optimizing the value of the fixed orifice’s diameter, a new design criterion that considers the maximum pressure sensitivity, flow controllability, and flow linearization is proposed to improve the balance between the effective displacement and the displacement fluctuation of the main valve. The new scheme is verified by simulations and experiments. Experimental results of the closed-loop displacement tracking have demonstrated that the delay time of the main valve is always within 3.5 ms under different working conditions, and the tracking error can be significantly reduced using the higher switching frequency. The amplitude–frequency experiments indicate that a −3 dB-frequency of the proposed valve can reach 9.5 Hz in the case of ±50% full scale and 15 Hz in the case of 0%–50% full scale. The values can be further improved by increasing the flow rate of the pilot HSV. 展开更多
关键词 two-stage proportional valve digital flow distribution high-speed on off valve position tracking characteristic dynamic performance
原文传递
COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS 被引量:6
19
作者 Xu Bing Ma Jien Lin Jianjie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期490-493,共4页
The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor rece... The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments arc carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out. 展开更多
关键词 Hydraulic elevator Computational flow rate proportional valve
下载PDF
基于Solidworks Flow Simulation的微流阻微开启压力止回阀设计 被引量:2
20
作者 李晓波 《科技通报》 北大核心 2017年第5期98-101,共4页
针对传统止回阀存在高开启压力和高流阻的问题,设计了一种微流阻、微开启压力的止回阀。依据CAD设计图,对阀门开启压力和流阻进行了理论计算。利用Solidworks Flow Simulation软件,分析阀门分别处于75°、40°、10°工况时... 针对传统止回阀存在高开启压力和高流阻的问题,设计了一种微流阻、微开启压力的止回阀。依据CAD设计图,对阀门开启压力和流阻进行了理论计算。利用Solidworks Flow Simulation软件,分析阀门分别处于75°、40°、10°工况时的压力云图,计算出每个工况下的流量系数。结果表明,设计的阀门开启压力小、流阻系数小、流量系数大、通流能力好,能有效减小流体系统中总输送泵的能耗,达到了设计的目标。 展开更多
关键词 止回阀 微流阻 微开启压力 流体分析
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部