The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span va...The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.展开更多
We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve...We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals. We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.展开更多
SnS∶Ag thin films were deposited on ITO glasses by pulse electro-deposition. By studying the effect of duty cycle on the properties of SnS∶Ag thin films, the optimum off-time(toff) is obtained to be 5 s, namely, the...SnS∶Ag thin films were deposited on ITO glasses by pulse electro-deposition. By studying the effect of duty cycle on the properties of SnS∶Ag thin films, the optimum off-time(toff) is obtained to be 5 s, namely, the optimal duty cycle is about 67%. The primary phase of SnS∶Ag films deposited on optimum parameters condition is SnS compound with good crystallization, and the films prefer to grow towards (111) plane. The films are dense, smooth and uniform with good microstructure, and the grains in the films are densely packed together, and their direct bandgap is about 1.40 eV. In addition, the bandgap of the films first rises and then drops with the increase of the duty cycle.展开更多
The present study deals with the investigation of dry sliding wear behavior of aluminium alloy based composites, reinforced with silicon carbide particles and solid lubricants such as graphite/antimony tri sulphide (S...The present study deals with the investigation of dry sliding wear behavior of aluminium alloy based composites, reinforced with silicon carbide particles and solid lubricants such as graphite/antimony tri sulphide (Sb2S3). The first one of the composites (binary) consists of Al. with 20% Silicon Carbide particles (SiCp) only. The other composite has SiCp and solid lubricants: Graphite + Sb2S3 (hybrid composite) at solid state. Both composites are fabricated through P/M route using “Hot powder perform forging technology”. The density and hardness are measured by usual methods. The pin-on-disc dry wear tests to measure the tribological properties are conducted for one hour at different parameters namely load: 30, 50 and 80N and speed: 5, 7 and 9m/s. The tested samples are examined using scanning electron microscope (SEM) for the characterization of microstructure and tribolayer on worn surface of composites. The results reveal that wear rate of hybrid composite is lower than that of binary composite. The wear rate decreased with the increasing load and increased with increasing speed. The results of the proposed composites are compared with iron based metal matrix composites (FM01N, FM02) at corresponding values of test parameters. These iron based metal matrix composites are also fabricated by P/M route using ‘Hot powder perform forging technology’. The comparative study reveals that the proposed composites have lower friction coefficient, less temperature rise and low noise level;however they have little higher wear rate. It is concluded that the hybrid composite has acceptable level of tribological characteristics with blacky and smooth worn surface.展开更多
AIM To examine the influence of night duty(ND) on endoscopic therapy for biliary duct stones.METHODS The subjects consisted of 133 patients who received initial endoscopic therapy for biliary duct stones performed by ...AIM To examine the influence of night duty(ND) on endoscopic therapy for biliary duct stones.METHODS The subjects consisted of 133 patients who received initial endoscopic therapy for biliary duct stones performed by eight endoscopists after they had been on(ND group, n = 34 patients) or not [day duty(DD) group, n = 99 patients]. Patient characteristics(age, gender, history of abdominal surgery, transverse diameter of the largest stone, number of stones), years of experience of the endoscopists, endoscopic procedures [sphincterotomy, papillary balloon dilation(EPBD), papillary large balloon dilation(EPLBD)], and outcomes of initial endoscopy(procedure time; rate of stone removal by the first endoscopist; proceduresuccess rate by the first endoscopist: removal of stones or endoscopic retrograde biliary drainage; rate of final stone removal; final procedure success rate; complications; hospitalization after the procedure) were compared retrospectively between the two groups. History of abdominal surgery and treatment outcomes were also compared between the groups for each of the four endoscopists who performed most of the procedures in the ND group.RESULTS There were no significant differences regarding the number of treatments performed by each endoscopist or the years of experience between the ND and DD groups. The frequency of endoscopic retrograde cholangiopancreatography procedures did not differ significantly between the groups. There were also no significant differences regarding patient characteristics: age, gender, history of abdominal surgery(ND 7: Billroth II 4, R-Y 3; DD 18: double tract reconstruction 1, Billroth I 3, Billroth II 6, R-Y 7, duodenoduodenostomy for annular pancreas 1), transverse diameter of largest stone, and number of stones between the two groups. Among the treatment procedures, the endoscopic s p h i n c t e r o t o m y a n d E P B D r a t e s d i d n o t d i f f e r significantly between the groups. However, EPLBD was performed more frequently in the ND group [47.1%(16/34) v s 19.2%(19/99)]. Regarding outcomes, there were no significant differences in the rate of stone removal, procedure success rate, complications(ND: pancreatitis 1; DD: pancreatitis 6, duodenal bleeding 1, decreased blood pressure 1, hypoxia 2), or hospitalization after the procedure. However, the procedure time was significantly longer in the ND group(71.5 ± 44.7 vs 54.2 ± 28.8). Among the four endoscopists, there were no significant differences in patient history of abdominal surgery, removal of stones, or procedure success rate. However, the procedure time for one endoscopist was significantly longer in the ND group.CONCLUSION The time required for endoscopic therapy for bile duct stones might be influenced by ND.展开更多
Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The ...Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The asynchronous and the duty cycle pulsed actuation modes were proposed and tested. The velocity fields induced by multiple DBD plasma actuators with different phase angles and duty cycle ratios were acquired and the momentum transfer characteristics of the flow field were discussed. Consequently, the mechanism of the peristalsis-acceleration multi- ple DBD plasma actuation was analyzed. The results show that the peristaltic flow acceleration effect of multiple plasma actuators occurs mainly in paraelectric direction, and the mechanism of peristaltic flow acceleration is ejection pushing effect rather than injection pumping effect. The asynchronous and the duty cycle pulsed actuation modes can, with energy consumption increase of merely 10%, achieve 65% and 42% increase of downstream velocity, and thus are promising in velocity improvement and energy saving.展开更多
The accuracy of an articulated torque analysis influences the comprehensive performances of heavy-duty multi-legged robots. Currently, the extremal estimation method and some complex methods are employed to calculate ...The accuracy of an articulated torque analysis influences the comprehensive performances of heavy-duty multi-legged robots. Currently, the extremal estimation method and some complex methods are employed to calculate the articulated torques, which results in a large safety margin or a large number of calculations. To quickly obtain accurate articulated torques, an analysis method for the articulated torque is presented for an electrically driven heavy-duty six-legged robot. First, the rearmost leg that experiences the maximum normal contact force is confirmed when the robot transits a slope. Based on the ant-type and crab-type tripod gaits, the formulas of classical mechanics and MATLAB software are employed to theoretically analyze the relevant static torques of the joints. With the changes in the joint angles for the abductor joint, hip joint, and knee joint, variable tendency charts and extreme curves are obtained for the static articulated torques. Meanwhile, the maximum static articulated torques and the corresponding poses of the robot are also obtained. According to the poses of the robot under the maximum static articulated torques, ADAMS software is used to carry out a static simulation analysis. Based on the relevant simulation curves of the articulated torques, the maximum static articulated torques are acquired. A comparative analysis of the maximum static articulated torques shows that the theoretical calculation values are higher than the static simulation values, and the maximum error value is approximately 10%. The proposed method lays a foundation for quickly determining accurate articulated torques to develop heavy-duty six-legged robots.展开更多
In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-tic biased substrate positively relative to th...In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-tic biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond qual- ity. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.展开更多
The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting th...The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.展开更多
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intr...Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intro- ducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature moni- toring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing tech- nology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articlesto guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.展开更多
The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to p...The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.展开更多
Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA00...Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.展开更多
Background: It is crucial for the army to know the prevalence of obstructive sleep apnea(OSA) syndrome in activeduty army personnel. Little information has been reported on the prevalence of OSA and clinical features ...Background: It is crucial for the army to know the prevalence of obstructive sleep apnea(OSA) syndrome in activeduty army personnel. Little information has been reported on the prevalence of OSA and clinical features in activeduty army personnel. This study was aimed to estimate the prevalence of snoring and risk of developing OSA in activeduty army personnel in Thailand and to identify the co-morbidities of OSA. In total, 1107 participants who were aged20–60 years and were deployed to the three southernmost provinces of Thailand were enrolled. All the participants completed the Phramongkutklao(PMK) Hospital OSA Questionnaire that was modified and validated from the Berlin Questionnaire and underwent physical examination. The participants were 1107 active-duty army personnel in the three southernmost provinces of Thailand, both males and females, aged 20–60 years.Methods: The PMK OSA Questionnaire was used to assess the risk of OSA together with interviewing for snoring,fatigue, falling asleep and day-time sleepiness. Physical examination of the neck, chest and hip circumference,and height was performed. Information concerning physical training, co-morbid diseases, smoking and alcoholic consumption was collected.Results: The prevalence of snoring was 58.5, and 4.8% met the PMK OSA Questionnaire criteria, thus indicating a high risk of OSA. The information obtained indicated that laryngopharyngeal reflux(LPR), current smoking and alcoholic consumption were significantly higher in the high-risk OSA group.Conclusions: Early detection and treatment of OSA in active-duty army personnel are imperative. Physical examination and polysomnography can be used to reveal the high-risk group. High body mess index(BMI), laryngopharyngeal reflux, current smoking and alcoholic consumption are modifiable factors for OSA and are avoidable. A policy to decrease the BMI and risk of LPR, as well as to stop smoking and alcoholic consumption, should be applied.展开更多
In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of h...In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.展开更多
Influence of duty ratio of metallic gratings applied in quantum well infrared photodetector (QWIP) with detection ranging from 3 μm to 5 μm was studied in this paper. The influence on longer enhanced w...Influence of duty ratio of metallic gratings applied in quantum well infrared photodetector (QWIP) with detection ranging from 3 μm to 5 μm was studied in this paper. The influence on longer enhanced wavelength working at infrared waveband was investigated. A relationship between the duty ratio and the enhanced peak intensity is given. Some results can be applied to optimize the enhanced efficiency of the metallic gratings.展开更多
Are citizens morally obligated to obey and support their states? "Political Obligations and Authority" is perhaps A. John Simmons' most comprehensive summary of his mature views on this enduring philosophical prob...Are citizens morally obligated to obey and support their states? "Political Obligations and Authority" is perhaps A. John Simmons' most comprehensive summary of his mature views on this enduring philosophical problem. In this essay, Simmons critically engages Plato's dialogue Crito and culls from it three types of strategies for justifying political obligations: natural duty, associative, and transactional. Simmons argues that natural duty accounts are inherently incapable of providing moral grounding for political obligations, disqualifies both associative and transactional accounts on empirical grounds, and settles for a form of anarchism. I argue, assuming as Simmons does in this essay that natural duties imply obligations of support and obedience to political institutions, that the natural duty strategy promises to provide an escape route out of anarchism.展开更多
The electrically driven six-legged robot with high carrying capacity is an indispensable equipment for planetary exploration, but it hinders its practicability because of its low efficiency of carrying energy. Meanwhi...The electrically driven six-legged robot with high carrying capacity is an indispensable equipment for planetary exploration, but it hinders its practicability because of its low efficiency of carrying energy. Meanwhile, its load capacity also affects its application range. To reduce the power consumption, increase the load to mass ratio, and improve the stability of robot, the relationship between the walking modes and the forces of feet under the tripod gait are researched for an electrically driven heavy-duty six-legged robot. Based on the configuration characteristics of electrically driven heavy-duty six-legged, the typical walking modes of robot are analyzed. The mathematical models of the normal forces of feet are respectively established under the tripod gait of typical walking modes. According to the MATLAB software, the variable tendency charts are respectively gained for the normal forces of feet. The walking experiments under the typical tripod gaits are implemented for the prototype of electrically driven heavy-duty six-legged robot. The variable tendencies of maximum normal forces of feet are acquired. The comparison results show that the theoretical and experimental data are in the same trend. The walking modes which are most available to realize the average force of distribution of each foot are confirmed. The proposed method of analyzing the relationship between the walking modes and the forces of feet can quickly determine the optimal walking mode and gait parameters under the average distribution of foot force, which is propitious to develop the excellent heavy-duty multi-legged robots with the lower power consumption, larger load to mass ratio, and higher stability.展开更多
This paper presents the shear performance analysis of a heavy-duty universal hinged cast steel support with the largest bearing capacity. The effect of 9 parameters ( 52 specimens) ,i. e. height of the upper support,d...This paper presents the shear performance analysis of a heavy-duty universal hinged cast steel support with the largest bearing capacity. The effect of 9 parameters ( 52 specimens) ,i. e. height of the upper support,depth of the ring of the upper support,depth of the top plate of the bottom support,height of the ribs of the bottom support,depth of the ribs of the bottom support,bolt hole diameter,number of the ribs of the bowl,depth of the ribs of the bowl,and yield strength of the material,were analyzed with a 3-dimensional elastic-plastic finite element model in which the nonlinearities of geometry,material and contact were all considered. Analysis shows that height of the upper support,depth of the ring of the upper support and yield strength of the material have a great effect on the mechanical performance of the support. Height of the upper support has the largest effect on performance price ratio of the support,and the maximum effect can be up to 160% . Depth of the top plate of the bottom support,height of the ribs of the bottom support and depth of the ribs of the bottom support have a medium effect on performance price ratio of the support,and the effect is within the limit of 15% 19% .展开更多
At high altitudes, power of an internal combustion engine reduces due to air density reduction. In turbocharged diesel engine this issue affects the performance of the compressor and can result in unstable operation o...At high altitudes, power of an internal combustion engine reduces due to air density reduction. In turbocharged diesel engine this issue affects the performance of the compressor and can result in unstable operation of the turbocharger if the power is not decreased by engine actuator. Mainly for testing the effects of altitude in the test room, air throttle valve and combustion air handling unit were used to reduce the suction air pressure. Easier and cheaper solution to consider effect of altitude on engine performance is to mask part of the air filter to reduce the suction pressure. In this paper, pressure drop against 0%, 26%, 52%, 66% and 74% of air filter hole’s masking for different mass flow rates has been studied by computational fluid dynamics. The analysis output mass flow rate-pressure diagram for the air filter, will be used as input data in the GT-Power software which is a one-dimensional computational fluid dynamics software and the effect of masking on altitude and performance at different revolutions per minute of the engine is investigated. Also, an experimental and computational fluid dynamics study was carried out to predict altitude against different proportions of air filter hole’s masking at 1000 rpm. The predicted results are validated by comparing with those of experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions with the present work.展开更多
In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping...In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.展开更多
文摘The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.
文摘We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals. We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.
基金National Nature Sciences Funding of China(61076063)Key Project of Fujian Provincial Department of Science &Technology(2008I0019)Fujian Provincial Natural Science Foundation of China(2009J01285)
文摘SnS∶Ag thin films were deposited on ITO glasses by pulse electro-deposition. By studying the effect of duty cycle on the properties of SnS∶Ag thin films, the optimum off-time(toff) is obtained to be 5 s, namely, the optimal duty cycle is about 67%. The primary phase of SnS∶Ag films deposited on optimum parameters condition is SnS compound with good crystallization, and the films prefer to grow towards (111) plane. The films are dense, smooth and uniform with good microstructure, and the grains in the films are densely packed together, and their direct bandgap is about 1.40 eV. In addition, the bandgap of the films first rises and then drops with the increase of the duty cycle.
文摘The present study deals with the investigation of dry sliding wear behavior of aluminium alloy based composites, reinforced with silicon carbide particles and solid lubricants such as graphite/antimony tri sulphide (Sb2S3). The first one of the composites (binary) consists of Al. with 20% Silicon Carbide particles (SiCp) only. The other composite has SiCp and solid lubricants: Graphite + Sb2S3 (hybrid composite) at solid state. Both composites are fabricated through P/M route using “Hot powder perform forging technology”. The density and hardness are measured by usual methods. The pin-on-disc dry wear tests to measure the tribological properties are conducted for one hour at different parameters namely load: 30, 50 and 80N and speed: 5, 7 and 9m/s. The tested samples are examined using scanning electron microscope (SEM) for the characterization of microstructure and tribolayer on worn surface of composites. The results reveal that wear rate of hybrid composite is lower than that of binary composite. The wear rate decreased with the increasing load and increased with increasing speed. The results of the proposed composites are compared with iron based metal matrix composites (FM01N, FM02) at corresponding values of test parameters. These iron based metal matrix composites are also fabricated by P/M route using ‘Hot powder perform forging technology’. The comparative study reveals that the proposed composites have lower friction coefficient, less temperature rise and low noise level;however they have little higher wear rate. It is concluded that the hybrid composite has acceptable level of tribological characteristics with blacky and smooth worn surface.
文摘AIM To examine the influence of night duty(ND) on endoscopic therapy for biliary duct stones.METHODS The subjects consisted of 133 patients who received initial endoscopic therapy for biliary duct stones performed by eight endoscopists after they had been on(ND group, n = 34 patients) or not [day duty(DD) group, n = 99 patients]. Patient characteristics(age, gender, history of abdominal surgery, transverse diameter of the largest stone, number of stones), years of experience of the endoscopists, endoscopic procedures [sphincterotomy, papillary balloon dilation(EPBD), papillary large balloon dilation(EPLBD)], and outcomes of initial endoscopy(procedure time; rate of stone removal by the first endoscopist; proceduresuccess rate by the first endoscopist: removal of stones or endoscopic retrograde biliary drainage; rate of final stone removal; final procedure success rate; complications; hospitalization after the procedure) were compared retrospectively between the two groups. History of abdominal surgery and treatment outcomes were also compared between the groups for each of the four endoscopists who performed most of the procedures in the ND group.RESULTS There were no significant differences regarding the number of treatments performed by each endoscopist or the years of experience between the ND and DD groups. The frequency of endoscopic retrograde cholangiopancreatography procedures did not differ significantly between the groups. There were also no significant differences regarding patient characteristics: age, gender, history of abdominal surgery(ND 7: Billroth II 4, R-Y 3; DD 18: double tract reconstruction 1, Billroth I 3, Billroth II 6, R-Y 7, duodenoduodenostomy for annular pancreas 1), transverse diameter of largest stone, and number of stones between the two groups. Among the treatment procedures, the endoscopic s p h i n c t e r o t o m y a n d E P B D r a t e s d i d n o t d i f f e r significantly between the groups. However, EPLBD was performed more frequently in the ND group [47.1%(16/34) v s 19.2%(19/99)]. Regarding outcomes, there were no significant differences in the rate of stone removal, procedure success rate, complications(ND: pancreatitis 1; DD: pancreatitis 6, duodenal bleeding 1, decreased blood pressure 1, hypoxia 2), or hospitalization after the procedure. However, the procedure time was significantly longer in the ND group(71.5 ± 44.7 vs 54.2 ± 28.8). Among the four endoscopists, there were no significant differences in patient history of abdominal surgery, removal of stones, or procedure success rate. However, the procedure time for one endoscopist was significantly longer in the ND group.CONCLUSION The time required for endoscopic therapy for bile duct stones might be influenced by ND.
基金supported by National Natural Science Foundation of China(No.51107101)the Foundation for Fundamental Research of the Northwestern Polytechnical University of China(JC201103)
文摘Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The asynchronous and the duty cycle pulsed actuation modes were proposed and tested. The velocity fields induced by multiple DBD plasma actuators with different phase angles and duty cycle ratios were acquired and the momentum transfer characteristics of the flow field were discussed. Consequently, the mechanism of the peristalsis-acceleration multi- ple DBD plasma actuation was analyzed. The results show that the peristaltic flow acceleration effect of multiple plasma actuators occurs mainly in paraelectric direction, and the mechanism of peristaltic flow acceleration is ejection pushing effect rather than injection pumping effect. The asynchronous and the duty cycle pulsed actuation modes can, with energy consumption increase of merely 10%, achieve 65% and 42% increase of downstream velocity, and thus are promising in velocity improvement and energy saving.
基金supported by National Basic Research Program of China(973 Program, Grant No. 2013CB035502)International Science and Technology Cooperation Project with Russia (Grant No. 2010DFR70270)+2 种基金National Natural Science Foundation of China (Grant No. 51275106)"111" Project (Grant No. B07018)Key Laboratory Opening Funding of Aerospace Mechanism and Control, China (Grant No. HIT. KLOF.2010057)
文摘The accuracy of an articulated torque analysis influences the comprehensive performances of heavy-duty multi-legged robots. Currently, the extremal estimation method and some complex methods are employed to calculate the articulated torques, which results in a large safety margin or a large number of calculations. To quickly obtain accurate articulated torques, an analysis method for the articulated torque is presented for an electrically driven heavy-duty six-legged robot. First, the rearmost leg that experiences the maximum normal contact force is confirmed when the robot transits a slope. Based on the ant-type and crab-type tripod gaits, the formulas of classical mechanics and MATLAB software are employed to theoretically analyze the relevant static torques of the joints. With the changes in the joint angles for the abductor joint, hip joint, and knee joint, variable tendency charts and extreme curves are obtained for the static articulated torques. Meanwhile, the maximum static articulated torques and the corresponding poses of the robot are also obtained. According to the poses of the robot under the maximum static articulated torques, ADAMS software is used to carry out a static simulation analysis. Based on the relevant simulation curves of the articulated torques, the maximum static articulated torques are acquired. A comparative analysis of the maximum static articulated torques shows that the theoretical calculation values are higher than the static simulation values, and the maximum error value is approximately 10%. The proposed method lays a foundation for quickly determining accurate articulated torques to develop heavy-duty six-legged robots.
基金supported by National Natural Science Foundation of China (No.50472010)
文摘In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-tic biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond qual- ity. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.
文摘The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.
基金Supported by National Natural Science Foundation of China(Grant No.51475343)International Science and Technology Cooperation Program of China(Grant No.2015DFA70340)
文摘Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intro- ducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature moni- toring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing tech- nology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articlesto guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
基金the support of the US Department of State through Fulbright Scholar Grant 474/2009
文摘The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.
基金supported by National Natural Science Foundation of China(No.21276036)Liaoning Provincial Natural Science Foundation of China(No.2015020123)the Fundamental Research Funds for the Central Universities of China(No.3132015154)
文摘Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.
基金Sleep Center,Department of Otolaryngology,Phramongkutklao Hospital
文摘Background: It is crucial for the army to know the prevalence of obstructive sleep apnea(OSA) syndrome in activeduty army personnel. Little information has been reported on the prevalence of OSA and clinical features in activeduty army personnel. This study was aimed to estimate the prevalence of snoring and risk of developing OSA in activeduty army personnel in Thailand and to identify the co-morbidities of OSA. In total, 1107 participants who were aged20–60 years and were deployed to the three southernmost provinces of Thailand were enrolled. All the participants completed the Phramongkutklao(PMK) Hospital OSA Questionnaire that was modified and validated from the Berlin Questionnaire and underwent physical examination. The participants were 1107 active-duty army personnel in the three southernmost provinces of Thailand, both males and females, aged 20–60 years.Methods: The PMK OSA Questionnaire was used to assess the risk of OSA together with interviewing for snoring,fatigue, falling asleep and day-time sleepiness. Physical examination of the neck, chest and hip circumference,and height was performed. Information concerning physical training, co-morbid diseases, smoking and alcoholic consumption was collected.Results: The prevalence of snoring was 58.5, and 4.8% met the PMK OSA Questionnaire criteria, thus indicating a high risk of OSA. The information obtained indicated that laryngopharyngeal reflux(LPR), current smoking and alcoholic consumption were significantly higher in the high-risk OSA group.Conclusions: Early detection and treatment of OSA in active-duty army personnel are imperative. Physical examination and polysomnography can be used to reveal the high-risk group. High body mess index(BMI), laryngopharyngeal reflux, current smoking and alcoholic consumption are modifiable factors for OSA and are avoidable. A policy to decrease the BMI and risk of LPR, as well as to stop smoking and alcoholic consumption, should be applied.
基金financially supported by the National Science and Technology Major Project of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2017ZX04014001)
文摘In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.
文摘Influence of duty ratio of metallic gratings applied in quantum well infrared photodetector (QWIP) with detection ranging from 3 μm to 5 μm was studied in this paper. The influence on longer enhanced wavelength working at infrared waveband was investigated. A relationship between the duty ratio and the enhanced peak intensity is given. Some results can be applied to optimize the enhanced efficiency of the metallic gratings.
文摘Are citizens morally obligated to obey and support their states? "Political Obligations and Authority" is perhaps A. John Simmons' most comprehensive summary of his mature views on this enduring philosophical problem. In this essay, Simmons critically engages Plato's dialogue Crito and culls from it three types of strategies for justifying political obligations: natural duty, associative, and transactional. Simmons argues that natural duty accounts are inherently incapable of providing moral grounding for political obligations, disqualifies both associative and transactional accounts on empirical grounds, and settles for a form of anarchism. I argue, assuming as Simmons does in this essay that natural duties imply obligations of support and obedience to political institutions, that the natural duty strategy promises to provide an escape route out of anarchism.
基金Supported by National Natural Science Foundation of China(Grant Nos.51505335,51275106)National Basic Research Program of China(973Program,Grant No.2013CB035502)
文摘The electrically driven six-legged robot with high carrying capacity is an indispensable equipment for planetary exploration, but it hinders its practicability because of its low efficiency of carrying energy. Meanwhile, its load capacity also affects its application range. To reduce the power consumption, increase the load to mass ratio, and improve the stability of robot, the relationship between the walking modes and the forces of feet under the tripod gait are researched for an electrically driven heavy-duty six-legged robot. Based on the configuration characteristics of electrically driven heavy-duty six-legged, the typical walking modes of robot are analyzed. The mathematical models of the normal forces of feet are respectively established under the tripod gait of typical walking modes. According to the MATLAB software, the variable tendency charts are respectively gained for the normal forces of feet. The walking experiments under the typical tripod gaits are implemented for the prototype of electrically driven heavy-duty six-legged robot. The variable tendencies of maximum normal forces of feet are acquired. The comparison results show that the theoretical and experimental data are in the same trend. The walking modes which are most available to realize the average force of distribution of each foot are confirmed. The proposed method of analyzing the relationship between the walking modes and the forces of feet can quickly determine the optimal walking mode and gait parameters under the average distribution of foot force, which is propitious to develop the excellent heavy-duty multi-legged robots with the lower power consumption, larger load to mass ratio, and higher stability.
基金Sponsored by the National Natural Science Foundation of China( Grant No. 50878066)the National Key Technology R&D Program during the 11th Five-Year Plan Period of China( Grant No. 2006BAJ01B02)
文摘This paper presents the shear performance analysis of a heavy-duty universal hinged cast steel support with the largest bearing capacity. The effect of 9 parameters ( 52 specimens) ,i. e. height of the upper support,depth of the ring of the upper support,depth of the top plate of the bottom support,height of the ribs of the bottom support,depth of the ribs of the bottom support,bolt hole diameter,number of the ribs of the bowl,depth of the ribs of the bowl,and yield strength of the material,were analyzed with a 3-dimensional elastic-plastic finite element model in which the nonlinearities of geometry,material and contact were all considered. Analysis shows that height of the upper support,depth of the ring of the upper support and yield strength of the material have a great effect on the mechanical performance of the support. Height of the upper support has the largest effect on performance price ratio of the support,and the maximum effect can be up to 160% . Depth of the top plate of the bottom support,height of the ribs of the bottom support and depth of the ribs of the bottom support have a medium effect on performance price ratio of the support,and the effect is within the limit of 15% 19% .
文摘At high altitudes, power of an internal combustion engine reduces due to air density reduction. In turbocharged diesel engine this issue affects the performance of the compressor and can result in unstable operation of the turbocharger if the power is not decreased by engine actuator. Mainly for testing the effects of altitude in the test room, air throttle valve and combustion air handling unit were used to reduce the suction air pressure. Easier and cheaper solution to consider effect of altitude on engine performance is to mask part of the air filter to reduce the suction pressure. In this paper, pressure drop against 0%, 26%, 52%, 66% and 74% of air filter hole’s masking for different mass flow rates has been studied by computational fluid dynamics. The analysis output mass flow rate-pressure diagram for the air filter, will be used as input data in the GT-Power software which is a one-dimensional computational fluid dynamics software and the effect of masking on altitude and performance at different revolutions per minute of the engine is investigated. Also, an experimental and computational fluid dynamics study was carried out to predict altitude against different proportions of air filter hole’s masking at 1000 rpm. The predicted results are validated by comparing with those of experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions with the present work.
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.