Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,...A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,and rotation)to enhance the number of training data for the model.A window area is used to extract the spatial distribution characteristics of soil geochemistry and measure their correspondence with the occurrence of known subsurface deposits.Prospecting prediction is achieved by matching the characteristics of the window area of an unknown area with the relationships established in the known area.This method can efficiently predict mineral prospective areas where there are few ore deposits used for generating the training dataset,meaning that the deep-learning method can be effectively used for deposit prospecting prediction.Using soil active geochemical measurement data,this method was applied in the Daqiao area,Gansu Province,for which seven favorable gold prospecting target areas were predicted.The Daqiao orogenic gold deposit of latest Jurassic and Early Jurassic age in the southern domain has more than 105 t of gold resources at an average grade of 3-4 g/t.In 2020,the project team drilled and verified the K prediction area,and found 66 m gold mineralized bodies.The new method should be applicable to prospecting prediction using conventional geochemical data in other areas.展开更多
Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of thi...Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.展开更多
Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting h...Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.展开更多
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
基金funded by a pilot project entitled“Deep Geological Survey of Benxi-Linjiang Area”(1212011220247)of the 3D Geological Mapping and Deep Geological Survey of China Geological Survey。
文摘A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,and rotation)to enhance the number of training data for the model.A window area is used to extract the spatial distribution characteristics of soil geochemistry and measure their correspondence with the occurrence of known subsurface deposits.Prospecting prediction is achieved by matching the characteristics of the window area of an unknown area with the relationships established in the known area.This method can efficiently predict mineral prospective areas where there are few ore deposits used for generating the training dataset,meaning that the deep-learning method can be effectively used for deposit prospecting prediction.Using soil active geochemical measurement data,this method was applied in the Daqiao area,Gansu Province,for which seven favorable gold prospecting target areas were predicted.The Daqiao orogenic gold deposit of latest Jurassic and Early Jurassic age in the southern domain has more than 105 t of gold resources at an average grade of 3-4 g/t.In 2020,the project team drilled and verified the K prediction area,and found 66 m gold mineralized bodies.The new method should be applicable to prospecting prediction using conventional geochemical data in other areas.
基金the Geological Science and technology foundation of Shandong Provincial Bureau of Geology and Mineral Resources (Grant No. 20080037)
文摘Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.
基金funded by Geological Survey Program of China Geological Survey(DD20190816,DD20160057,DD20190606).
文摘Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.