AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) ...AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) or the novel anticancer agents sorafenib or bortezomib. METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore, additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multi-kinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new, targeted anticancer agents.展开更多
Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally ...Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-34Z (Bortezomib, Velcade). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease are related to proteasome inhibitor reversibility and the rebound of proteasome activity 72 h post PS-341 administration.展开更多
Ubiquitin-proteasome pathway mediates the degradation of cell protein, and cell cycle, gene translation and expression, antigen presentation and inflammatory development. Proteasome inhibitor can inhibit growth and pr...Ubiquitin-proteasome pathway mediates the degradation of cell protein, and cell cycle, gene translation and expression, antigen presentation and inflammatory development. Proteasome inhibitor can inhibit growth and proliferation of tumor cell, induce apoptosis and reverse multipledrug resistance of tumor cell, increase the sensitivity of other chemotherapeutic drugs and radiotherapy, and is a novel class of potent anti-tumor agents.展开更多
To investigate the effect of proteasome inhibitor MG132 on the apoptosis of bovine lens epithelial cells (BLECs), the cells were treated with MG132 at different concentrations for12, 24 and 36 h. The cell viability ...To investigate the effect of proteasome inhibitor MG132 on the apoptosis of bovine lens epithelial cells (BLECs), the cells were treated with MG132 at different concentrations for12, 24 and 36 h. The cell viability was analyzed by MTT assay and the effect of MG132 on the apoptosis of BLECs was assessed by flow cytometry (FCM). The results showed that after treatment for the same period, the inhibitory effect of MG132 on BLECs proliferation was enhanced with the increment of the concentration of MG132 (0, 2, 5, 10, μmol/L) (P〈0.05). The 50% inhibiting concentration (IC50) was 2.03 μmol/L when the BLECs were treated with MG132 for 36 h. MG132 also induced the apop- tosis of BLECs obviously. FCM showed that the apoptosis index of the cells treated by MG132 at 2 μmol/L for 12 h was (20.24±1.51)%, and that of the control was (0.98±0.20)% respectively (P〈0.01, n=3). It was concluded that MG132 could lead to apoptosis of BLECs. The decrease of proteasome activity may play an important role in the formation and development of cataract.展开更多
OBJECTIVE In this study, we applied multidrug resistant leukemia cell line expressing mdr1-mRNA to observe changes in mdr1-mRNA, the P-gp, cell cycle and apoptosis before and after bortezomib was used, in order to exp...OBJECTIVE In this study, we applied multidrug resistant leukemia cell line expressing mdr1-mRNA to observe changes in mdr1-mRNA, the P-gp, cell cycle and apoptosis before and after bortezomib was used, in order to explore the mechanism of reversal of leukemia multidrug resistance by the proteasome inhibitor bortezomib.METHODS Flow cytometry (FCM) was used to detect the intracellular drug concentration, expression of P-gp, cell apoptosis and cell cycle status of K562/DNR cells before and a er treatment with different concentrations of bortezomib. Fluorescence quantitative PCR was applied to detect the mdr1-mRNA expression in K562/DNR and K562/S cells.RESULTS Bortezomib could increase the intracellular DNR content in K562/DNR cells, but showed no e. ect in K562/S cells.5-100 nmol/L bortezomib could significantly reduce the P-gp/mdr1-mRNA expression in K562/DNR cells in vitro, and showed a dose-dependent effect. There was a statistically significant di. erence (P 〈 0.05) between di. erent concentration groups and the control group. P-gp/mdr1-mRNA expression was negatively correlated with cell apoptosis (r = -0.912 and P 〈 0.01). After treatment with different concentrations of bortezomib for 24 h,K562/DNR cells in G2 + M phases were significantly increased,while cells in G0 + G1 phases and S phase were significantly decreased, accompanied by an increased apoptotic rate.CONCLUSION Bortezomib can induce G0 + G1 phase to G2 + M phase, and thereby enhance the chemosensitivity of leukemia, and may also reverse the multidrug resistance in leukemia mediated by P-gp overexpression encoded by mdr1 gene. This confi rms that bortezomib can reverse leukemia multidrug resistance at the levels of nucleic acid and protein molecules.展开更多
In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a smal...In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents.Thus,there has been a sustained search for novel molecular targets for iCCA.The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6(PSMD6),a 19S regulatory subunit of the proteasome,in human iCCA cells and specimens.The authors employed clustered regularly interspaced short palindromic repeat(CRISPR)knockout screening technology integrated with the computational CERES algorithm,and analyzed the human protein atlas(THPA)database and tissue microarrays.The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines,and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters.The authors conclude that PSMD6 may play a promoting role in iCCA.The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening,in vivo experiments,and a discussion of plausible mechanistic cues,which,therefore,dampen the significance of the results.Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA.In addition,the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA,development of proteasome inhibitors for cancer therapy,and advantages of CRISPR screening technology,computational methods,and THPA database as experimental tools for fighting cancer.We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.展开更多
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by...Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.展开更多
Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo,but its potential value in treating Parkinson's disease remains controversial.Here,we us...Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo,but its potential value in treating Parkinson's disease remains controversial.Here,we used the proteasome inhibitors lactacystin and MG132 to induce neurodegeneration of PC12 cells.Afterwards,conserved dopamine neurotrophic factor was administrated as a therapeutic factor,both pretreatment and posttreatment.Our results showed that(1)conserved dopamine neurotrophic factor enhanced lactacystin/MG132-induced cell viability and morphology,and attenuated alpha-synuclein accumulation in differentiated PC12 cells.(2)Enzyme linked immunosorbent assay showed up-regulated 26S proteasomal activity in MG132-induced PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.Similarly,26S proteasome activity was upregulated in lactacystin-induced PC12 cells pretreated with conserved dopamine neurotrophic factor.(3)With regard proteolytic enzymes(specifically,glutamyl peptide hydrolase,chymotrypsin,and trypsin),glutamyl peptide hydrolase activity was up-regulated in lactacystin/MG132-administered PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.However,upregulation of chymotrypsin activity was only observed in MG132-administered PC12 cells pretreated with conserved dopamine neurotrophic factor.There was no change in trypsin expression.We conclude that conserved dopamine neurotrophic factor develops its neurotrophic effects by modulating proteasomal activities,and thereby protects and rescues PC12 cells against neurodegeneration.展开更多
Aim To synthesize protected aminoalkyl sulfinyl dilactones which were useful as the synthetic intermediates or the Cterminal pharmacophores of potential peptidomimetic proteasome inhibitors. Methods Organic reactions ...Aim To synthesize protected aminoalkyl sulfinyl dilactones which were useful as the synthetic intermediates or the Cterminal pharmacophores of potential peptidomimetic proteasome inhibitors. Methods Organic reactions such as reduction, oxidation, olcfmation, and dihydroxylation were used. Results A convenient synthetic procedure to afford a series of aminoalkyl sulfinyl.dilactones was presented, which would be useful in the synthesis of five- or six-member sulfmyl dilactones. Conclusion Four aminoalkyl sulfmyl dilactones connecting different α-amino acids were synthesized.展开更多
Objective: To investigate the proteasome inhibitor MG132-induced apoptosis pathway in HL-60 cells and the role of allogeneic mixed lymphocyte reaction. Methods: Cell apoptosis was analyzed by flow cytometry. The ex...Objective: To investigate the proteasome inhibitor MG132-induced apoptosis pathway in HL-60 cells and the role of allogeneic mixed lymphocyte reaction. Methods: Cell apoptosis was analyzed by flow cytometry. The expressions of p21 protein, p27 protein and p53 protein in HL-60 ceils treated with MG132 were measured by Western blot. The proliferation of, peripheral blood mononuclear cells (PBMNCs) after treatment with 75 Gy irradiated HL-60 cells treated with MG132 was measured with CCK-8. Results: High-dose MG132 induced apoptosis in HL-60 cells. No significant change was observed in MG132-induced apoptosis after inhibiting caspase-8 and caspase-9 pathway. The expressions of p21 protein and p27 protein increased in MG132-induced apoptosis. HL-60 cells treated with low-dose MG132 improved the proliferation of PBMNCs from healthy volunteers. Conclusion: High-dose MG132 induced apoptosis and directly killed HL-60 ceils. MG132 induced apoptosis in a caspase-8- and caspase-9-independent pathway, p21 protein and p27 protein were involved in MG132-induced apoptosis in HL-60 cells. HL-60 cells treated with Low-dose MG132 improved the effect of promoting the proliferation of PBMNCs from healthy volunteers.展开更多
Multiple myeloma remains incurable with conventional treatments.However,new active drugs,including the immunomodulatory agents,thalidomide and lenalidomide, and the proteasome inhibitors bortezomib and NPI-0052,and ot...Multiple myeloma remains incurable with conventional treatments.However,new active drugs,including the immunomodulatory agents,thalidomide and lenalidomide, and the proteasome inhibitors bortezomib and NPI-0052,and other targeted therapies,have shown promising anti-myeloma activity.These agents represent a new generation of treatments for multiple myeloma that affect both specific intracellular signaling pathways and the tumor microenvironment.This review therefore focuses on the extensive clinical data available from studies of these drugs in the treatment of newly diagnosed,refractory and relapsed multiple myeloma.展开更多
Since the middle of 1990 s autologous stem cell trans-plantation has been the cornerstone for the treatment of young patients with multiple myeloma(MM). In the last decade the introduction of novel agents such as immu...Since the middle of 1990 s autologous stem cell trans-plantation has been the cornerstone for the treatment of young patients with multiple myeloma(MM). In the last decade the introduction of novel agents such as immunomodulatory drugs(IMi Ds) and proteasome inhibitors(PI), has dramatically changed the therapeutic scenario of this yet incurable disease. Due to the impressive results achieved with IMi Ds and PI both in terms of response rates and in terms of progression free and overall survival, and to the toxicity linked to high dose therapy and autologous stem cell transplantation(ASCT), a burning question nowadays is whether all young patients should be offered autotransplanta-tion up front or if this should be reserved for the time of relapse. This article provides a review of the data available regarding ASCT in MM and of the current opinion of the scientific community regarding its optimal timing.展开更多
Objectives To administrated proteasome inhibitor-MG-132 prior to reperfusion in rat myocardial ischemia-reperfusion model to determine whether MG-132 could reduce myocytic apoptosis. Methods and results MG-132 (0. ...Objectives To administrated proteasome inhibitor-MG-132 prior to reperfusion in rat myocardial ischemia-reperfusion model to determine whether MG-132 could reduce myocytic apoptosis. Methods and results MG-132 (0. 75 mg/kg in 2 ml DMSO) injection 5 min prior to reperfusion resulted significant reduction of myocardial reperfusion injury. This effect was accompanied by reduced polymorphonuclear neutrophils (PMN) infiltration in myocardial region surrounding the myocardial infarct, reduced apoptosis in cardiac myocytes, reduced NF-κB activation, as determined by electron microscopy, histology, immunohistochemistry, the terminal deoxynucleotidyl transferase-mediated nick endlabeling (TUNEL) method, reverse transcription-polymerase chain reaction. Functional effects of MG-132 on PMN accumulation, activation of nuclear factor kappa B (p65 mRNA and protein levels ), and apoptosis were characterized in rat myocardial tissue. MG132 time-dependently inhibited myocardial p65 mRNA expression and reduced myocardial apoptotic index (AI) after reperfusion for 2 h, 6 h and 24 h ( P 〈 0. 01 ). Moreover, MG-132 time-dependently decreased Bax protein levels, while increased Bcl-2 protein levels in ischemic and reperfused myocardium ( P 〈 0. 05 ), its effect peaked after reperfusion for 24 h. Conclusions Our results demonstrate that MG-132 reduced myocardial reperfusion injury by inhibiting myosytic apoptotic cell death and blocking activation of NF-κB, down-regulating Bax expression and up-regulating Bcl-2 expression as well as el evating Bcl-2/Bax ratio.展开更多
Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycl...Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aimed to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human ovarian cancer SK-OV-3 cells. The results suggested that YSY-01A significantly (P〈0.05) inhibited cellular proliferation of SK-OV-3 cells in a concentration-dependent and time-dependent manner. Furthermore, YSY-01A induced a G2/M cell cycle arrest of SK-OV-3 cells. Further investigation revealed that YSY-01A significantly (P〈0.05) changed the expression levels of a series of cell cycle related protein, such as cyclin B1, cdc2, and p-cdc2 (T14). Meanwhile, YSY-01A could inhibit the TNF-a-induced NF-kB nuclear translocation and lead to the increase of 1kBa as well as the decrease of IKK and Gadd45a In conclusion, YSY-01A showed remarkable anti-cancer activity on SK-OV-3 cells, and its molecular mechanisms were related to G2/M cell cycle arrest.展开更多
Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycl...Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aims to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human colorectal adenocarcinoma cells HT-29. The results suggested that YSY-01A significantly (P0.05) inhibited cellular proliferation of HT-29 cells in a time and concentration-dependent manner. Furthermore, YSY-01A suppressed the G 2 /M transition of HT-29 cells, whereas the mitotic inhibitor paclitaxel induced M phase accumulation. Further investigation revealed that YSY-01A significantly (P0.05) up-regulated the expression levels of a series of cell cycle related protein, such as cyclin B1, Wee1, p-cdc2 (Tyr15), p53, p21, and p27. The HT-29 cells only exhibited typical cytotoxic symptom when YSY-01A concentration reached 0.5 μM (P0.05), which was above the dose we used in the mechanism research. In conclusion, YSY-01A showed remarkable anti-cancer activity on HT-29 cells, and its molecular mechanisms are related to G 2 /M cell cycle transition arrest.展开更多
As a novel proteasome inhibitor, remarkable proliferation inhibitory effect of compound YSY-01A was shown on tumor cells in previous studies. However, few studies has reported its effect on gastric cancer and related ...As a novel proteasome inhibitor, remarkable proliferation inhibitory effect of compound YSY-01A was shown on tumor cells in previous studies. However, few studies has reported its effect on gastric cancer and related mechanism. We evaluated the anti-proliferative effect of compound YSY-01A using MGC-803 cells and its anti-tumor effect using xenograft nu-BALB/c mouse model. Cell proliferation inhibition was assessed by SRB assay. Related protein expression levels were determined by Western blot assay. We observed that the compound YSY-01A had a significant proliferation inhibitory effect on MGC-803 cells in vitro. Experiment in vivo showed that the compound YSY-01A had a remarkable growth inhibitory effect on MGC-803 cells xenograft tumor when it was used either alone or in combination with the conventional chemotherapeutic agent 5-fluorouracil (5-FU). Furthermore, YSY-01A and 5-FU had a synergistic effect on xenograft tumor. Results of molecular experiment showed that the compound YSY-01A had a remarkable inhibitory effect on TNF-c~ and IFN induced NF-KB nuclear translocation. At the same time, the compound YSY-01A could reduce the expression of IKK-~, IL-I~ and iNOS, while it significantly enhanced the expression of COX-2 in MGC-803 ceils. Taken together, compound YSY-01A had an impressive tumor inhibitory effect, and it worked in NF-KB-related pathway, suggesting that the compound YSY-01A was an effective therapeutic drug for patients with gastric cancer. Higher tumor cell growth inhibition after the treatment in a combination with 5-FU indicated that combining YSY-01A with 5-FU might be more effective for displaying tumor cell growth inhibitory effects on gastric cancer cells.展开更多
On the basis of the Michael-addition mechanism of classical proteasome inhibitors, six dipeptide vinyl sulfonamide and dipeptide vinyl sulfonate derivatives were designed and synthesized. Moreover, an efficient method...On the basis of the Michael-addition mechanism of classical proteasome inhibitors, six dipeptide vinyl sulfonamide and dipeptide vinyl sulfonate derivatives were designed and synthesized. Moreover, an efficient method for the synthesis of g-amino vinyl sulfonamides, key intermediates to the target molecules, was developed via the Wittig-Horner reaction of peptide aldehyde with Wittig reagents derived from methanesulfonamides.展开更多
YSY01-A, as a novel proteasome inhibitor, has shown remarkable proliferation inhibitory effect on certain types of tumor cells. However, few studies have reported its effect on non-small cell lung cancer (NSCLC), an...YSY01-A, as a novel proteasome inhibitor, has shown remarkable proliferation inhibitory effect on certain types of tumor cells. However, few studies have reported its effect on non-small cell lung cancer (NSCLC), and its underlying mechanism remains unknown. In our present study, we aimed to figure out the inhibitory effects as well as the mechanism of proteasome inhibitor YSY01-A against A549 cells both individually and in combination with cisplatin. A549 cell proliferation inhibition was assessed by SRB assay. Its related protein expression levels were determined by western blot assay. Moreover, the change of intracellular cisplatin accumulation was examined by ICP-MS assay. The results suggested that YSY01-A significantly (P〈0.001) inhibited the proliferation of A549 cells (IC50 was 36.2 nM for 72 h) in a concentration-dependent and time-dependent manner. Compared with the negative control group, YSY01-A (60 nM, 48 h) down-regulated PI3K/Akt pathway in A549 cells by increasing the expression level of PTEN (P〈0.01), and decreasing the expression level of PI3K (P〈0.001) and p-Akt/Akt (P〈0.001). When combined with cisplatin, YSY01-A of different concentrations (5, 10, 20 nM) could significantly increase the inhibition effects on A549 cells compared with the cisplatin alone treatment, showing a synergistic effect. At the same time, YSY01-A could remarkably block the cisplatin-induced down-regulation of hCTR1 in a concentration-dependent manner and increase cisplatin uptake from 2.01 to 2.47 fold (P〈0.001). In conclusion, compound YSY01-A could significantly inhibit proliferation of NSCLC A549 cells, showing a strong synergistic effect when combined with cisplatin. Down-regulation of PI3K/Akt pathway might be the mechanism of inhibitory effect of YSY0 l-A, and the combination with cisplatin might increase the expression of CTR1 and intracellular cisplatin accumulation.展开更多
YSY-01A has shown proliferation inhibitory activity to certain types of tumor cells by inhibiting proteasome. How- ever, its effect on autophagy, which is related with the ubiquitin proteasome pathway (UPP), remains...YSY-01A has shown proliferation inhibitory activity to certain types of tumor cells by inhibiting proteasome. How- ever, its effect on autophagy, which is related with the ubiquitin proteasome pathway (UPP), remains unclear. Our study aimed to find out its effect on autophagy and possible molecular mechanisms. The results suggested that YSY-0 l A significantly (P〈0.001) inhibited proliferation of PC-3M cells (IC50 was 287 nM for 48 h) in a concentration-dependent and time-dependent manner. YSY-01A (100 nM, 3 h) also induced autophagy in PC-3M ceils through increasing the expression of P53 (P〈0.001), Beclin-1 (P〈0.001) and LC3 (P〈0.001), and decreasing the expression of p-roTOR (P〈0.001) as compared with the negative control group. Autophagy stayed at a final stage in PC-3M cells after treated with YSY-01A (400 nM) for 12 h. Meanwhile inhibition of autophagy with chloroquine increased the sensitivity to YSY-01A in PC-3M cells. In conclusion, YSY-01A showed high proliferation inhibitory activity of PC-3M cells and it could induce autophagy in PC-3M cells. Inhibiting autophagy increased the cytotoxic activity of YSY-01A in PC-3M cells.展开更多
A new series of sulfonamide flavone derivatives are designed as non-covalent inhibitors of proteasome assisted with computer-aided drug design (CADD). The desired compounds were synthesized successfully and the biol...A new series of sulfonamide flavone derivatives are designed as non-covalent inhibitors of proteasome assisted with computer-aided drug design (CADD). The desired compounds were synthesized successfully and the biological evaluation was subsequently accomplished. The results showed negligible improvement from our lead compound (IC50 for β5 subunit was 14.0 μM). Thus, these flavone derivatives might be improved as potential 20S proteasome inhibitors.展开更多
基金a scholarship from the Sonnenfeld-Stiftung,Berlin,Germany for Viola Baradari
文摘AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) or the novel anticancer agents sorafenib or bortezomib. METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore, additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multi-kinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new, targeted anticancer agents.
基金Supported by NIH/NIAAA 8116 and by a Pilot Project Funding from the Alcohol Center Grant on Liver and Pancreas P50-011999
文摘Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-34Z (Bortezomib, Velcade). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease are related to proteasome inhibitor reversibility and the rebound of proteasome activity 72 h post PS-341 administration.
基金the National Outstanding Youth Scientists Foundation of china(No.30225038) and the Youth and Middle-Age Scientists Science and Research Found of the Affiliated Hospital,Wuhan University of Science and Technology.
文摘Ubiquitin-proteasome pathway mediates the degradation of cell protein, and cell cycle, gene translation and expression, antigen presentation and inflammatory development. Proteasome inhibitor can inhibit growth and proliferation of tumor cell, induce apoptosis and reverse multipledrug resistance of tumor cell, increase the sensitivity of other chemotherapeutic drugs and radiotherapy, and is a novel class of potent anti-tumor agents.
文摘To investigate the effect of proteasome inhibitor MG132 on the apoptosis of bovine lens epithelial cells (BLECs), the cells were treated with MG132 at different concentrations for12, 24 and 36 h. The cell viability was analyzed by MTT assay and the effect of MG132 on the apoptosis of BLECs was assessed by flow cytometry (FCM). The results showed that after treatment for the same period, the inhibitory effect of MG132 on BLECs proliferation was enhanced with the increment of the concentration of MG132 (0, 2, 5, 10, μmol/L) (P〈0.05). The 50% inhibiting concentration (IC50) was 2.03 μmol/L when the BLECs were treated with MG132 for 36 h. MG132 also induced the apop- tosis of BLECs obviously. FCM showed that the apoptosis index of the cells treated by MG132 at 2 μmol/L for 12 h was (20.24±1.51)%, and that of the control was (0.98±0.20)% respectively (P〈0.01, n=3). It was concluded that MG132 could lead to apoptosis of BLECs. The decrease of proteasome activity may play an important role in the formation and development of cataract.
文摘OBJECTIVE In this study, we applied multidrug resistant leukemia cell line expressing mdr1-mRNA to observe changes in mdr1-mRNA, the P-gp, cell cycle and apoptosis before and after bortezomib was used, in order to explore the mechanism of reversal of leukemia multidrug resistance by the proteasome inhibitor bortezomib.METHODS Flow cytometry (FCM) was used to detect the intracellular drug concentration, expression of P-gp, cell apoptosis and cell cycle status of K562/DNR cells before and a er treatment with different concentrations of bortezomib. Fluorescence quantitative PCR was applied to detect the mdr1-mRNA expression in K562/DNR and K562/S cells.RESULTS Bortezomib could increase the intracellular DNR content in K562/DNR cells, but showed no e. ect in K562/S cells.5-100 nmol/L bortezomib could significantly reduce the P-gp/mdr1-mRNA expression in K562/DNR cells in vitro, and showed a dose-dependent effect. There was a statistically significant di. erence (P 〈 0.05) between di. erent concentration groups and the control group. P-gp/mdr1-mRNA expression was negatively correlated with cell apoptosis (r = -0.912 and P 〈 0.01). After treatment with different concentrations of bortezomib for 24 h,K562/DNR cells in G2 + M phases were significantly increased,while cells in G0 + G1 phases and S phase were significantly decreased, accompanied by an increased apoptotic rate.CONCLUSION Bortezomib can induce G0 + G1 phase to G2 + M phase, and thereby enhance the chemosensitivity of leukemia, and may also reverse the multidrug resistance in leukemia mediated by P-gp overexpression encoded by mdr1 gene. This confi rms that bortezomib can reverse leukemia multidrug resistance at the levels of nucleic acid and protein molecules.
基金Supported by The National Key Research and Development Program of China,No.2017YFC1308602The Research Funds by the Fifth Affiliated Hospital of Harbin Medical University,No.2022-002 and No.2023-001.
文摘In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents.Thus,there has been a sustained search for novel molecular targets for iCCA.The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6(PSMD6),a 19S regulatory subunit of the proteasome,in human iCCA cells and specimens.The authors employed clustered regularly interspaced short palindromic repeat(CRISPR)knockout screening technology integrated with the computational CERES algorithm,and analyzed the human protein atlas(THPA)database and tissue microarrays.The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines,and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters.The authors conclude that PSMD6 may play a promoting role in iCCA.The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening,in vivo experiments,and a discussion of plausible mechanistic cues,which,therefore,dampen the significance of the results.Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA.In addition,the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA,development of proteasome inhibitors for cancer therapy,and advantages of CRISPR screening technology,computational methods,and THPA database as experimental tools for fighting cancer.We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.
基金This work was supported by the Natural Science Foundation of Shanghai Municipality(No.03ZR14016).
文摘Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.
基金supported by the Natural Science Foundation of Anhui Province of China,No.11040606Q11the National Natural Science Foundation of China,No.81100960
文摘Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo,but its potential value in treating Parkinson's disease remains controversial.Here,we used the proteasome inhibitors lactacystin and MG132 to induce neurodegeneration of PC12 cells.Afterwards,conserved dopamine neurotrophic factor was administrated as a therapeutic factor,both pretreatment and posttreatment.Our results showed that(1)conserved dopamine neurotrophic factor enhanced lactacystin/MG132-induced cell viability and morphology,and attenuated alpha-synuclein accumulation in differentiated PC12 cells.(2)Enzyme linked immunosorbent assay showed up-regulated 26S proteasomal activity in MG132-induced PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.Similarly,26S proteasome activity was upregulated in lactacystin-induced PC12 cells pretreated with conserved dopamine neurotrophic factor.(3)With regard proteolytic enzymes(specifically,glutamyl peptide hydrolase,chymotrypsin,and trypsin),glutamyl peptide hydrolase activity was up-regulated in lactacystin/MG132-administered PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.However,upregulation of chymotrypsin activity was only observed in MG132-administered PC12 cells pretreated with conserved dopamine neurotrophic factor.There was no change in trypsin expression.We conclude that conserved dopamine neurotrophic factor develops its neurotrophic effects by modulating proteasomal activities,and thereby protects and rescues PC12 cells against neurodegeneration.
基金National Natural Science Foundation of China(20572006)985 Program,Ministry of Education of China
文摘Aim To synthesize protected aminoalkyl sulfinyl dilactones which were useful as the synthetic intermediates or the Cterminal pharmacophores of potential peptidomimetic proteasome inhibitors. Methods Organic reactions such as reduction, oxidation, olcfmation, and dihydroxylation were used. Results A convenient synthetic procedure to afford a series of aminoalkyl sulfinyl.dilactones was presented, which would be useful in the synthesis of five- or six-member sulfmyl dilactones. Conclusion Four aminoalkyl sulfmyl dilactones connecting different α-amino acids were synthesized.
基金supported by the grants from Science and Research Special Foundation of Wuhan University of Science and Technology(No.zx0802)the Natural Science Foundation of Jiangxi Province(0640190)
文摘Objective: To investigate the proteasome inhibitor MG132-induced apoptosis pathway in HL-60 cells and the role of allogeneic mixed lymphocyte reaction. Methods: Cell apoptosis was analyzed by flow cytometry. The expressions of p21 protein, p27 protein and p53 protein in HL-60 ceils treated with MG132 were measured by Western blot. The proliferation of, peripheral blood mononuclear cells (PBMNCs) after treatment with 75 Gy irradiated HL-60 cells treated with MG132 was measured with CCK-8. Results: High-dose MG132 induced apoptosis in HL-60 cells. No significant change was observed in MG132-induced apoptosis after inhibiting caspase-8 and caspase-9 pathway. The expressions of p21 protein and p27 protein increased in MG132-induced apoptosis. HL-60 cells treated with low-dose MG132 improved the proliferation of PBMNCs from healthy volunteers. Conclusion: High-dose MG132 induced apoptosis and directly killed HL-60 ceils. MG132 induced apoptosis in a caspase-8- and caspase-9-independent pathway, p21 protein and p27 protein were involved in MG132-induced apoptosis in HL-60 cells. HL-60 cells treated with Low-dose MG132 improved the effect of promoting the proliferation of PBMNCs from healthy volunteers.
文摘Multiple myeloma remains incurable with conventional treatments.However,new active drugs,including the immunomodulatory agents,thalidomide and lenalidomide, and the proteasome inhibitors bortezomib and NPI-0052,and other targeted therapies,have shown promising anti-myeloma activity.These agents represent a new generation of treatments for multiple myeloma that affect both specific intracellular signaling pathways and the tumor microenvironment.This review therefore focuses on the extensive clinical data available from studies of these drugs in the treatment of newly diagnosed,refractory and relapsed multiple myeloma.
文摘Since the middle of 1990 s autologous stem cell trans-plantation has been the cornerstone for the treatment of young patients with multiple myeloma(MM). In the last decade the introduction of novel agents such as immunomodulatory drugs(IMi Ds) and proteasome inhibitors(PI), has dramatically changed the therapeutic scenario of this yet incurable disease. Due to the impressive results achieved with IMi Ds and PI both in terms of response rates and in terms of progression free and overall survival, and to the toxicity linked to high dose therapy and autologous stem cell transplantation(ASCT), a burning question nowadays is whether all young patients should be offered autotransplanta-tion up front or if this should be reserved for the time of relapse. This article provides a review of the data available regarding ASCT in MM and of the current opinion of the scientific community regarding its optimal timing.
文摘Objectives To administrated proteasome inhibitor-MG-132 prior to reperfusion in rat myocardial ischemia-reperfusion model to determine whether MG-132 could reduce myocytic apoptosis. Methods and results MG-132 (0. 75 mg/kg in 2 ml DMSO) injection 5 min prior to reperfusion resulted significant reduction of myocardial reperfusion injury. This effect was accompanied by reduced polymorphonuclear neutrophils (PMN) infiltration in myocardial region surrounding the myocardial infarct, reduced apoptosis in cardiac myocytes, reduced NF-κB activation, as determined by electron microscopy, histology, immunohistochemistry, the terminal deoxynucleotidyl transferase-mediated nick endlabeling (TUNEL) method, reverse transcription-polymerase chain reaction. Functional effects of MG-132 on PMN accumulation, activation of nuclear factor kappa B (p65 mRNA and protein levels ), and apoptosis were characterized in rat myocardial tissue. MG132 time-dependently inhibited myocardial p65 mRNA expression and reduced myocardial apoptotic index (AI) after reperfusion for 2 h, 6 h and 24 h ( P 〈 0. 01 ). Moreover, MG-132 time-dependently decreased Bax protein levels, while increased Bcl-2 protein levels in ischemic and reperfused myocardium ( P 〈 0. 05 ), its effect peaked after reperfusion for 24 h. Conclusions Our results demonstrate that MG-132 reduced myocardial reperfusion injury by inhibiting myosytic apoptotic cell death and blocking activation of NF-κB, down-regulating Bax expression and up-regulating Bcl-2 expression as well as el evating Bcl-2/Bax ratio.
基金Eleventh Five-Year Plan for National Science and Technology Major Project(Grant No.2009ZX0930-010)National Science Foundation of China(Grant No.81172915)a grant from Major New Drugs Research and Development Platform of Peking University(Grant No.2009ZX09301-010)
文摘Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aimed to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human ovarian cancer SK-OV-3 cells. The results suggested that YSY-01A significantly (P〈0.05) inhibited cellular proliferation of SK-OV-3 cells in a concentration-dependent and time-dependent manner. Furthermore, YSY-01A induced a G2/M cell cycle arrest of SK-OV-3 cells. Further investigation revealed that YSY-01A significantly (P〈0.05) changed the expression levels of a series of cell cycle related protein, such as cyclin B1, cdc2, and p-cdc2 (T14). Meanwhile, YSY-01A could inhibit the TNF-a-induced NF-kB nuclear translocation and lead to the increase of 1kBa as well as the decrease of IKK and Gadd45a In conclusion, YSY-01A showed remarkable anti-cancer activity on SK-OV-3 cells, and its molecular mechanisms were related to G2/M cell cycle arrest.
基金Eleventh Five-Year Plan for National Science and Technology Major Project (Grant No.2009ZX0930-010)National Science Foundation of China (NSFC81172915)A grant from Major New Drugs Research and Development Platform of Peking University (Grant No.2009ZX09301-010)
文摘Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aims to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human colorectal adenocarcinoma cells HT-29. The results suggested that YSY-01A significantly (P0.05) inhibited cellular proliferation of HT-29 cells in a time and concentration-dependent manner. Furthermore, YSY-01A suppressed the G 2 /M transition of HT-29 cells, whereas the mitotic inhibitor paclitaxel induced M phase accumulation. Further investigation revealed that YSY-01A significantly (P0.05) up-regulated the expression levels of a series of cell cycle related protein, such as cyclin B1, Wee1, p-cdc2 (Tyr15), p53, p21, and p27. The HT-29 cells only exhibited typical cytotoxic symptom when YSY-01A concentration reached 0.5 μM (P0.05), which was above the dose we used in the mechanism research. In conclusion, YSY-01A showed remarkable anti-cancer activity on HT-29 cells, and its molecular mechanisms are related to G 2 /M cell cycle transition arrest.
基金Eleventh Five-Year Plan for National Science and Technology Major Project(Grant No.2009ZX0930-010)National Science Foundation of China(Grant No.81172915)a grant from Major New Drug Research and Development Platform of PekingUniversity(Grant No.2009ZX09301-010)
文摘As a novel proteasome inhibitor, remarkable proliferation inhibitory effect of compound YSY-01A was shown on tumor cells in previous studies. However, few studies has reported its effect on gastric cancer and related mechanism. We evaluated the anti-proliferative effect of compound YSY-01A using MGC-803 cells and its anti-tumor effect using xenograft nu-BALB/c mouse model. Cell proliferation inhibition was assessed by SRB assay. Related protein expression levels were determined by Western blot assay. We observed that the compound YSY-01A had a significant proliferation inhibitory effect on MGC-803 cells in vitro. Experiment in vivo showed that the compound YSY-01A had a remarkable growth inhibitory effect on MGC-803 cells xenograft tumor when it was used either alone or in combination with the conventional chemotherapeutic agent 5-fluorouracil (5-FU). Furthermore, YSY-01A and 5-FU had a synergistic effect on xenograft tumor. Results of molecular experiment showed that the compound YSY-01A had a remarkable inhibitory effect on TNF-c~ and IFN induced NF-KB nuclear translocation. At the same time, the compound YSY-01A could reduce the expression of IKK-~, IL-I~ and iNOS, while it significantly enhanced the expression of COX-2 in MGC-803 ceils. Taken together, compound YSY-01A had an impressive tumor inhibitory effect, and it worked in NF-KB-related pathway, suggesting that the compound YSY-01A was an effective therapeutic drug for patients with gastric cancer. Higher tumor cell growth inhibition after the treatment in a combination with 5-FU indicated that combining YSY-01A with 5-FU might be more effective for displaying tumor cell growth inhibitory effects on gastric cancer cells.
基金Natural Science Foundation of China for the financial support(Grant No.30772626)
文摘On the basis of the Michael-addition mechanism of classical proteasome inhibitors, six dipeptide vinyl sulfonamide and dipeptide vinyl sulfonate derivatives were designed and synthesized. Moreover, an efficient method for the synthesis of g-amino vinyl sulfonamides, key intermediates to the target molecules, was developed via the Wittig-Horner reaction of peptide aldehyde with Wittig reagents derived from methanesulfonamides.
基金Eleventh Five-Year Plan for National Science and Technology Major Project(Grant No.2009ZX0930010)National Science Foundation of China(Grant No.81172915)a grant from Major New Drug Research and Development Platform of Peking University(GrantNo.2009ZX09301010)
文摘YSY01-A, as a novel proteasome inhibitor, has shown remarkable proliferation inhibitory effect on certain types of tumor cells. However, few studies have reported its effect on non-small cell lung cancer (NSCLC), and its underlying mechanism remains unknown. In our present study, we aimed to figure out the inhibitory effects as well as the mechanism of proteasome inhibitor YSY01-A against A549 cells both individually and in combination with cisplatin. A549 cell proliferation inhibition was assessed by SRB assay. Its related protein expression levels were determined by western blot assay. Moreover, the change of intracellular cisplatin accumulation was examined by ICP-MS assay. The results suggested that YSY01-A significantly (P〈0.001) inhibited the proliferation of A549 cells (IC50 was 36.2 nM for 72 h) in a concentration-dependent and time-dependent manner. Compared with the negative control group, YSY01-A (60 nM, 48 h) down-regulated PI3K/Akt pathway in A549 cells by increasing the expression level of PTEN (P〈0.01), and decreasing the expression level of PI3K (P〈0.001) and p-Akt/Akt (P〈0.001). When combined with cisplatin, YSY01-A of different concentrations (5, 10, 20 nM) could significantly increase the inhibition effects on A549 cells compared with the cisplatin alone treatment, showing a synergistic effect. At the same time, YSY01-A could remarkably block the cisplatin-induced down-regulation of hCTR1 in a concentration-dependent manner and increase cisplatin uptake from 2.01 to 2.47 fold (P〈0.001). In conclusion, compound YSY01-A could significantly inhibit proliferation of NSCLC A549 cells, showing a strong synergistic effect when combined with cisplatin. Down-regulation of PI3K/Akt pathway might be the mechanism of inhibitory effect of YSY0 l-A, and the combination with cisplatin might increase the expression of CTR1 and intracellular cisplatin accumulation.
基金Eleventh Five-Year Plan for National Science and Technology Major Project(Grant No.2009ZX0930-010)National Science Foundation of China(Grant No.81172915)a grant from Major New Drugs Research and Development Platform of Peking University(Grant No.2009ZX09301-010)
文摘YSY-01A has shown proliferation inhibitory activity to certain types of tumor cells by inhibiting proteasome. How- ever, its effect on autophagy, which is related with the ubiquitin proteasome pathway (UPP), remains unclear. Our study aimed to find out its effect on autophagy and possible molecular mechanisms. The results suggested that YSY-0 l A significantly (P〈0.001) inhibited proliferation of PC-3M cells (IC50 was 287 nM for 48 h) in a concentration-dependent and time-dependent manner. YSY-01A (100 nM, 3 h) also induced autophagy in PC-3M ceils through increasing the expression of P53 (P〈0.001), Beclin-1 (P〈0.001) and LC3 (P〈0.001), and decreasing the expression of p-roTOR (P〈0.001) as compared with the negative control group. Autophagy stayed at a final stage in PC-3M cells after treated with YSY-01A (400 nM) for 12 h. Meanwhile inhibition of autophagy with chloroquine increased the sensitivity to YSY-01A in PC-3M cells. In conclusion, YSY-01A showed high proliferation inhibitory activity of PC-3M cells and it could induce autophagy in PC-3M cells. Inhibiting autophagy increased the cytotoxic activity of YSY-01A in PC-3M cells.
基金The National Natural Science Foundation of China(Grant No.21202003)the National Basic Research Program of China(Grant No.2012CB518000)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120001110010)
文摘A new series of sulfonamide flavone derivatives are designed as non-covalent inhibitors of proteasome assisted with computer-aided drug design (CADD). The desired compounds were synthesized successfully and the biological evaluation was subsequently accomplished. The results showed negligible improvement from our lead compound (IC50 for β5 subunit was 14.0 μM). Thus, these flavone derivatives might be improved as potential 20S proteasome inhibitors.