Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac...Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.展开更多
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o...Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.展开更多
基金the National Natural Science Foundation of China(Qing Zhang,Nos.11932006,U1934206,12172121)the Fundamental Research Funds for the Central Universities(Xin Gu,No.B210201031).
文摘Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.
基金Fundamental Research Funds for the Central Universities,China(No.14D110715/17/18)Start up Fund by Shanghai University of Engineering Science(No.2015-69)Young Teacher Training Program by Shanghai,China(No.ZZGCD15051))
文摘Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.