With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosi...With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosity was the highest in the Casuarina equisetifolia forest (46.168%), but the lowest in the Encalyptus robusta forest (39.46%). The soil capillary porosity was the highest in the Acacia mangium forest (22.57%), but the lowest in the secondary forest (18.95%). The soil water content was the highest in the C. equisetifolia forest, with a mean value of 27.85%, but the lowest in the secondary forest, with a mean value of 4.34%. The soil pH values were in the range of 4.81-6.59, the soils in the A. mangium forest, C. equisetifolia forest and E. robusta forest were strongly acidic (pH 4.5-5.5), and the soils in the secondary forest and C. nucifera forest were weakly acidic. The soils had organic matter contents in the range of 0.34-28.68 g/kg, and showed an order of A. mangium forest〉C. equisetifolia forest〉E. robusta forest〉secondary forest〉C. nucifera forest, with a decreasing trend with the soil depth increasing. The soil total N contents were in the range of 0.10-1.63 g/kg, the A. mangium forest showed the highest soil total N contents, while the C. nucifera forest exhibited the lowest soil total N contents; the soil total P contents were in the range of 0.21-1.74 g/kg, and the E. robusta forest had the highest soil total P contents; and the soil total K contents were in the range of 0.16-2.15 g/kg, and the A. mangium forest exhibited the highest soil total K contents. The soil available P contents were in the range of 0.98-132.46 mg/kg; and the secondary forests had the highest soil available P contents; and the soil rapidly available K contents were in the range of 3.03-27.35 mg/kg, and the C. nucifera forest exhibited the highest soil rapidly available K contents. The soil ammonium N contents were in the range of 1.38-5.15 mg/kg, and the nitrate N contents were in the range were in the range of 0.56 -3.51 mg/kg. The A. mangium forest showed the highest soil nitrate N contents (with a mean value of 2.29 mg/kg) and ammonium N contents (with a mean value of 3.93 mg/kg). For the same forest type, with the increase of soil depth, the nitrate nitrogen and ammonium nitrogen content also showed a decreasing trend.展开更多
Soil organic carbon(SOC)mineralization is closely related to carbon source or sink of terrestrial ecosystem.Natural stands of Larix olgensis on the Jincang forest farm,Jilin Province were selected to investigate the d...Soil organic carbon(SOC)mineralization is closely related to carbon source or sink of terrestrial ecosystem.Natural stands of Larix olgensis on the Jincang forest farm,Jilin Province were selected to investigate the dynamics of SOC mineralization and its correlations with other soil properties in a young forest and mid-aged forest at soil depths of 0–10,>10–20,>20–40 and>40–60 cm.The results showed that compared with a mid-aged forest,the SOC stock in the young forest was 32%higher.Potentially mineralizable soil carbon(C0)in the young forest was 1.1–2.5 g kg^-1,accounting for 5.5–8.1%of total SOC during the 105 days incubation period and 0.3–1.5 g kg^-1 in the mid-aged forest at different soil depths,occupying 2.8–3.4%of total SOC.There was a significant difference in C0 among the soil depths.The dynamics of the SOC mineralization was a good fit to a three-pool(labile,intermediate and stable)carbon decomposition kinetic model.The SOC decomposition rate for different stand ages and different soil depths reached high levels for the first 15 days.Correlation analysis revealed that the C0 was significantly positively related with SOC content,soil total N(TN)and readily available K(AK)concentration.The labile soil carbon pool was significantly related to SOC and TN concentration,and significantly negatively correlated with soil bulk density.The intermediate carbon pool was positively associated with TN and AK.The stable carbon pool had negative correlations with SOC,TN and AK.展开更多
The purpose of this research was to investigate the relationship between soil biota such as microbial activity,soil fauna(e.g.,earthworms and enchytraeids),and soil physical and chemical properties.The study area was ...The purpose of this research was to investigate the relationship between soil biota such as microbial activity,soil fauna(e.g.,earthworms and enchytraeids),and soil physical and chemical properties.The study area was located in Pieniny National Park(PNP)in the Carpathian Mountains in southern Poland.Soil samples were collected from six forest monitoring areas of PNP from two soil layers(at 0–15 cm and 15–30 cm down,respectively).The investigated soils were classified to eutric cambisols and had silt or silt loam soil texture.Upon analysis,soil aggregate stability index was connected with other physical,chemical,and biological soil properties.It was noted that the stability index of 3 mm to 5 mm soil aggregates influenced pH and dissolved organic carbon.The stability index of 2 mm to 3 mm soil aggregates was positively correlated with dissolved organic carbon,soil moisture,microbial biomass carbon,total organic carbon,total nitrogen,and enchytraeid density,and negatively correlated with bulk density,particle density,porosity,and permanent wilting point.The stability index of 1 mm to 2 mm soil aggregates was positively correlated with total nitrogen,enchytraeid and earthworm density and negatively correlated with particle density,porosity,and permanent wilting point.The study has shown what factors create a stable soil structure in the forest soils of PNP.展开更多
基金Supported by Special Fund for Technological Development and Research of Provincial Scientific Research Institutions(KYYS-2015-16)~~
文摘With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosity was the highest in the Casuarina equisetifolia forest (46.168%), but the lowest in the Encalyptus robusta forest (39.46%). The soil capillary porosity was the highest in the Acacia mangium forest (22.57%), but the lowest in the secondary forest (18.95%). The soil water content was the highest in the C. equisetifolia forest, with a mean value of 27.85%, but the lowest in the secondary forest, with a mean value of 4.34%. The soil pH values were in the range of 4.81-6.59, the soils in the A. mangium forest, C. equisetifolia forest and E. robusta forest were strongly acidic (pH 4.5-5.5), and the soils in the secondary forest and C. nucifera forest were weakly acidic. The soils had organic matter contents in the range of 0.34-28.68 g/kg, and showed an order of A. mangium forest〉C. equisetifolia forest〉E. robusta forest〉secondary forest〉C. nucifera forest, with a decreasing trend with the soil depth increasing. The soil total N contents were in the range of 0.10-1.63 g/kg, the A. mangium forest showed the highest soil total N contents, while the C. nucifera forest exhibited the lowest soil total N contents; the soil total P contents were in the range of 0.21-1.74 g/kg, and the E. robusta forest had the highest soil total P contents; and the soil total K contents were in the range of 0.16-2.15 g/kg, and the A. mangium forest exhibited the highest soil total K contents. The soil available P contents were in the range of 0.98-132.46 mg/kg; and the secondary forests had the highest soil available P contents; and the soil rapidly available K contents were in the range of 3.03-27.35 mg/kg, and the C. nucifera forest exhibited the highest soil rapidly available K contents. The soil ammonium N contents were in the range of 1.38-5.15 mg/kg, and the nitrate N contents were in the range were in the range of 0.56 -3.51 mg/kg. The A. mangium forest showed the highest soil nitrate N contents (with a mean value of 2.29 mg/kg) and ammonium N contents (with a mean value of 3.93 mg/kg). For the same forest type, with the increase of soil depth, the nitrate nitrogen and ammonium nitrogen content also showed a decreasing trend.
基金jointly supported by National Key R&D Program of China(Grant No.2017YFC0504002)Natural Science Foundation of China(No.31270679)
文摘Soil organic carbon(SOC)mineralization is closely related to carbon source or sink of terrestrial ecosystem.Natural stands of Larix olgensis on the Jincang forest farm,Jilin Province were selected to investigate the dynamics of SOC mineralization and its correlations with other soil properties in a young forest and mid-aged forest at soil depths of 0–10,>10–20,>20–40 and>40–60 cm.The results showed that compared with a mid-aged forest,the SOC stock in the young forest was 32%higher.Potentially mineralizable soil carbon(C0)in the young forest was 1.1–2.5 g kg^-1,accounting for 5.5–8.1%of total SOC during the 105 days incubation period and 0.3–1.5 g kg^-1 in the mid-aged forest at different soil depths,occupying 2.8–3.4%of total SOC.There was a significant difference in C0 among the soil depths.The dynamics of the SOC mineralization was a good fit to a three-pool(labile,intermediate and stable)carbon decomposition kinetic model.The SOC decomposition rate for different stand ages and different soil depths reached high levels for the first 15 days.Correlation analysis revealed that the C0 was significantly positively related with SOC content,soil total N(TN)and readily available K(AK)concentration.The labile soil carbon pool was significantly related to SOC and TN concentration,and significantly negatively correlated with soil bulk density.The intermediate carbon pool was positively associated with TN and AK.The stable carbon pool had negative correlations with SOC,TN and AK.
基金funded by the Ministry of Science and Higher Education of the Republic of Poland, No. BM-4175/17 and BM-2111/18
文摘The purpose of this research was to investigate the relationship between soil biota such as microbial activity,soil fauna(e.g.,earthworms and enchytraeids),and soil physical and chemical properties.The study area was located in Pieniny National Park(PNP)in the Carpathian Mountains in southern Poland.Soil samples were collected from six forest monitoring areas of PNP from two soil layers(at 0–15 cm and 15–30 cm down,respectively).The investigated soils were classified to eutric cambisols and had silt or silt loam soil texture.Upon analysis,soil aggregate stability index was connected with other physical,chemical,and biological soil properties.It was noted that the stability index of 3 mm to 5 mm soil aggregates influenced pH and dissolved organic carbon.The stability index of 2 mm to 3 mm soil aggregates was positively correlated with dissolved organic carbon,soil moisture,microbial biomass carbon,total organic carbon,total nitrogen,and enchytraeid density,and negatively correlated with bulk density,particle density,porosity,and permanent wilting point.The stability index of 1 mm to 2 mm soil aggregates was positively correlated with total nitrogen,enchytraeid and earthworm density and negatively correlated with particle density,porosity,and permanent wilting point.The study has shown what factors create a stable soil structure in the forest soils of PNP.