Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi...Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.展开更多
Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and su...Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.展开更多
Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological cond...Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.展开更多
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts...Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.展开更多
The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses ...The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway.展开更多
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve...A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.展开更多
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica...Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.展开更多
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ...Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.展开更多
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders...With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.展开更多
The implementation of Ecological Function Protection Zone(EFPZ)policy is significant for the ecological restoration and conservation of soil and water in the territory space.This manuscript analyzed and quantified the...The implementation of Ecological Function Protection Zone(EFPZ)policy is significant for the ecological restoration and conservation of soil and water in the territory space.This manuscript analyzed and quantified the impact of EFPZ on the regional water conservation function,based on land use data from 2005,2008,2010,2015 and 2020,by conducting a counterfactual simulation along with the GeoSOS-FLUS model and the InVEST model.The results demonstrate that the delineation of EFPZ can significantly influence the water conservation.(1)From 2010 to 2020,as the EFPZ was implemented,the water conservation in the study area was increasing year by year,with a growth rate of 0.03×10^(8) m^(3)∙a^(-1).On the other hand,the simulated water conservation capacity without the implementation of EFPZ decreased year by year,with a decrease rate of 0.01×10^(8) m^(3)∙a^(-1).(2)The EFPZ accounts for only 23%of the total area,but the contribution rate of water conservation reaches 80%.The actual values of water conservation and average water yield per unit pixel in the EFPZ show an increasing trend both internally and externally,while the counterfactual simulation values exhibit a decreasing trend.(3)The water conservation is much higher within the EFPZ than without EFPZ.The implementation of EFPZ has a significant effect on the improvement of the water conservation capacity in Maqu EFPZ and Yellow River Source EFPZ.The protection effectiveness should be enhanced in Qilian Mountain EFPZ and afforestation activities need to be carefully considered in Loess Plateau EFPZ.展开更多
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t...In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.展开更多
[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[...[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
The sites of Maritime Silk Road in Haikou City are composed of sites of navigation and trade,religious temples and stone monuments,urban construction and coastal defense scattered on the south bank of the Qiongzhou St...The sites of Maritime Silk Road in Haikou City are composed of sites of navigation and trade,religious temples and stone monuments,urban construction and coastal defense scattered on the south bank of the Qiongzhou Strait.They played a key role in the formation and shaping of the settlements in Haikou City,recorded the process of intercommunication and integration between Chinese civilization and other regional cultures,and witnessed the germination,flourishing and inheritance of Haikou’s unique marine culture.The mixture of points,lines and planes blends with the urban area and coastline of Haikou City in spatial distribution.In this paper,from the perspective of world cultural heritage,some suggestions for the protection planning of sites of Maritime Silk Road in Haikou City were proposed based on the analysis of historical and geographical background,comparison of domestic and foreign similar sites,and evaluation of cultural heritage value.展开更多
Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with n...Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with natural hazards,caused by earthquakes,floods and volcanic eruptions,and troubles unlikely come solely from the action of nature.Disasters threatening the human race can be caused also by people themselves.Both types of disasters cause vast human suffering,at the same time destroying cultural heritage as well,that has the function of determining the identity of social communities.These sufferings should be added to those that can be determined only by in-depth analyses which are derived from the synergy of natural forces and mistaken choices made by the humans,when it comes to their habitat.The proposed strategic plan for protection of built heritage in emergency situations may become the powerful catalyst for the process of revitalization by which the social tissue of community is maintained and restored,creating the symbol of resistance by which it endures each and every natural element and evil men behaviour.展开更多
Heritage tourism is a hot research topic in the academic field,and most scholars focus on the development model of heritage tourism and heritage conservation theory and methods,but less on the heritage tourists themse...Heritage tourism is a hot research topic in the academic field,and most scholars focus on the development model of heritage tourism and heritage conservation theory and methods,but less on the heritage tourists themselves.Based on the theory of planned behavior,the study introduces the variable of“perception”,and takes the Hangzhou section of the Grand Canal as a case study,and investigates tourists through literature,fieldwork and questionnaires.The study constructs a“perception-subjective norm-willingness to protect”model to explore the influence of tourists’“perception”and“subjective norm”on“willingness to protect”.The study found that:first,heritage tourists’perceptions significantly affect attitudes,subjective norms,perceptual behavior control and willingness to conserve.Second,tourists’attitudes,subjective norms and perceptual behavior control significantly affect their willingness to conserve.Third,heritage tourists’economic perceptions,social perceptions and emotional perceptions can affect willingness to conserve.The study provides references for relevant governments and tourism enterprises to conserve and develop the Grand Canal section.展开更多
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej...With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.展开更多
The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strateg...The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strategies, which are hampered by the weight and size of inspection equipment, as well as the taxonomic extensiveness of interrupted species. Moreover, some insect pests that impede farmer productivity and profitability are difficult for researchers to address on time due to a lack of appropriate plant protection measures. Farmers’ reliance on synthetic pesticides and biocontrol agents has resulted in major economic and environmental ramifications. DNA barcoding is a novel technology that has the potential to improve Integrated Pest Management decision-making, which is dependent on the ability to correctly identify pest and beneficial organisms. This is due to some natural traits such as phenology or pesticide susceptibility browbeaten by IPM strategies to avert pest establishment. Specifically, Deoxyribonucleic acid (DNA) sequence information was applied effectively for the identification of some micro-organisms. This technology, DNA barcoding, allows for the identification of insect species by using short, standardized gene sequences. DNA barcoding is basically based on repeatable and accessible technique that allows for the mechanisation or automation of species discrimination. This technique bridges the taxonomic bio-security gap and meets the International Plant Protection Convention diagnostic standards for insect identification. This review therefore discusses DNA barcoding as a technique for insect pests’ identification and its potential application for crop protection.展开更多
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic...The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.展开更多
The residential area of Wuchang Vehicle Factory is taken as a case to explore the protection and renewal strategies of industrial heritage residential areas.By analyzing the current situation of the residential area,i...The residential area of Wuchang Vehicle Factory is taken as a case to explore the protection and renewal strategies of industrial heritage residential areas.By analyzing the current situation of the residential area,issues such as functional decline,memory loss,and weakened community vitality are revealed.Three design concepts are proposed:building renovation,historical space renovation,and the introduction of cultural and creative industries,aiming to improve the living environment,showcase historical value,cultivate cultural and creative industries,promote economic transformation,and community vitality.This paper could provide reference for the protection and renewal of similar industrial heritage residential areas,and new ideas for the research and utilization of industrial heritage.By comprehensively considering heritage protection,cultural inheritance,and community development,systematic suggestions are proposed.展开更多
基金supported by the Key Projects of the National Natural Science Foundation of China,No.11932013(to XC)Key Military Logistics Research Projects,No.B WJ21J002(to XC)+4 种基金the Key projects of the Special Zone for National Defence Innovation,No.21-163-12-ZT006002-13(to XC)the National Nature Science Foundation of China No.82272255(to XC)the National Defense Science and Technology Outstanding Youth Science Fund Program,No.2021-JCIQ-ZQ-035(to XC)the Scientific Research Innovation Team Project of Armed Police Characteristic Medical Center,No.KYCXTD0104(to ZL)the National Natural Science Foundation of China Youth Fund,No.82004467(to BC)。
文摘Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.
基金supported by the National Natural Science Foundation of China(81703947)the Fundamental Research Funds for the Central Universities(2019-JYB-XJSJJ-011).
文摘Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.
基金supported by Fonds Clinatec and COVEA France(to JM).
文摘Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.
文摘Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.
基金supported by the Key Research and Development Program of Ningxia Hui Autonomous Region,China(2022BEG02003)the Excellent Member of Youth Innovation Promotion Association,Chinese Academy of Sciences(Y202085)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2023448).
文摘The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway.
基金financially supported by the Science and Technology Commission Foundation of Shanghai(Grant Nos.22DZ1208903,20DZ2251900)the National Natural Science Foundation of China(Grant No.51679134)。
文摘A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.
文摘Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.
基金the financial support from the Postdoctoral Science Foundation of China(2022M720131)Spring Sunshine Collaborative Research Project of the Ministry of Education(202201660)+3 种基金Youth Project of Gansu Natural Science Foundation(22JR5RA542)General Project of Gansu Philosophy and Social Science Foundation(2022YB014)National Natural Science Foundation of China(72034003,72243006,and 71874074)Fundamental Research Funds for the Central Universities(2023lzdxjbkyzx008,lzujbky-2021-sp72)。
文摘Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.
基金supported in part by the National Natural Science Foundation of China under Grant U1905211,Grant 61872088,Grant 62072109,Grant 61872090,and Grant U1804263in part by the Guangxi Key Laboratory of Trusted Software under Grant KX202042+3 种基金in part by the Science and Technology Major Support Program of Guizhou Province under Grant 20183001in part by the Science and Technology Program of Guizhou Province under Grant 20191098in part by the Project of High-level Innovative Talents of Guizhou Province under Grant 20206008in part by the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province under Grant ZCL21015.
文摘With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.
基金funded by the National Science Foundation of China(Grant No.42161043)the improvement plan of scientific research ability in Northwest Normal University(NWNU-LKQN2020-16).
文摘The implementation of Ecological Function Protection Zone(EFPZ)policy is significant for the ecological restoration and conservation of soil and water in the territory space.This manuscript analyzed and quantified the impact of EFPZ on the regional water conservation function,based on land use data from 2005,2008,2010,2015 and 2020,by conducting a counterfactual simulation along with the GeoSOS-FLUS model and the InVEST model.The results demonstrate that the delineation of EFPZ can significantly influence the water conservation.(1)From 2010 to 2020,as the EFPZ was implemented,the water conservation in the study area was increasing year by year,with a growth rate of 0.03×10^(8) m^(3)∙a^(-1).On the other hand,the simulated water conservation capacity without the implementation of EFPZ decreased year by year,with a decrease rate of 0.01×10^(8) m^(3)∙a^(-1).(2)The EFPZ accounts for only 23%of the total area,but the contribution rate of water conservation reaches 80%.The actual values of water conservation and average water yield per unit pixel in the EFPZ show an increasing trend both internally and externally,while the counterfactual simulation values exhibit a decreasing trend.(3)The water conservation is much higher within the EFPZ than without EFPZ.The implementation of EFPZ has a significant effect on the improvement of the water conservation capacity in Maqu EFPZ and Yellow River Source EFPZ.The protection effectiveness should be enhanced in Qilian Mountain EFPZ and afforestation activities need to be carefully considered in Loess Plateau EFPZ.
基金supported by the Guangxi Science and Technology Plan and Project(Grant Numbers 2021AC19131 and 2022AC21140)Guangxi University of Science and Technology Doctoral Fund Project(Grant Number 20Z40).
文摘In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.
基金Supported by 2024 General Project of Guangdong Provincial Philosophy and Social Science Planning(GD24CGL18).
文摘[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘The sites of Maritime Silk Road in Haikou City are composed of sites of navigation and trade,religious temples and stone monuments,urban construction and coastal defense scattered on the south bank of the Qiongzhou Strait.They played a key role in the formation and shaping of the settlements in Haikou City,recorded the process of intercommunication and integration between Chinese civilization and other regional cultures,and witnessed the germination,flourishing and inheritance of Haikou’s unique marine culture.The mixture of points,lines and planes blends with the urban area and coastline of Haikou City in spatial distribution.In this paper,from the perspective of world cultural heritage,some suggestions for the protection planning of sites of Maritime Silk Road in Haikou City were proposed based on the analysis of historical and geographical background,comparison of domestic and foreign similar sites,and evaluation of cultural heritage value.
文摘Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with natural hazards,caused by earthquakes,floods and volcanic eruptions,and troubles unlikely come solely from the action of nature.Disasters threatening the human race can be caused also by people themselves.Both types of disasters cause vast human suffering,at the same time destroying cultural heritage as well,that has the function of determining the identity of social communities.These sufferings should be added to those that can be determined only by in-depth analyses which are derived from the synergy of natural forces and mistaken choices made by the humans,when it comes to their habitat.The proposed strategic plan for protection of built heritage in emergency situations may become the powerful catalyst for the process of revitalization by which the social tissue of community is maintained and restored,creating the symbol of resistance by which it endures each and every natural element and evil men behaviour.
基金This paper is supported by the Zhejiang Philosophy and Social Science Planning Project(Grant No.22NDYD23YB)the research project of Qianjiang College of Hangzhou Normal University.
文摘Heritage tourism is a hot research topic in the academic field,and most scholars focus on the development model of heritage tourism and heritage conservation theory and methods,but less on the heritage tourists themselves.Based on the theory of planned behavior,the study introduces the variable of“perception”,and takes the Hangzhou section of the Grand Canal as a case study,and investigates tourists through literature,fieldwork and questionnaires.The study constructs a“perception-subjective norm-willingness to protect”model to explore the influence of tourists’“perception”and“subjective norm”on“willingness to protect”.The study found that:first,heritage tourists’perceptions significantly affect attitudes,subjective norms,perceptual behavior control and willingness to conserve.Second,tourists’attitudes,subjective norms and perceptual behavior control significantly affect their willingness to conserve.Third,heritage tourists’economic perceptions,social perceptions and emotional perceptions can affect willingness to conserve.The study provides references for relevant governments and tourism enterprises to conserve and develop the Grand Canal section.
基金the 2021 Key Project of Natural Science and Technology of Yangzhou Polytechnic Institute,Active Disturbance Rejection and Fault-Tolerant Control of Multi-Rotor Plant ProtectionUAV Based on QBall-X4(Grant Number 2021xjzk002).
文摘With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.
文摘The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strategies, which are hampered by the weight and size of inspection equipment, as well as the taxonomic extensiveness of interrupted species. Moreover, some insect pests that impede farmer productivity and profitability are difficult for researchers to address on time due to a lack of appropriate plant protection measures. Farmers’ reliance on synthetic pesticides and biocontrol agents has resulted in major economic and environmental ramifications. DNA barcoding is a novel technology that has the potential to improve Integrated Pest Management decision-making, which is dependent on the ability to correctly identify pest and beneficial organisms. This is due to some natural traits such as phenology or pesticide susceptibility browbeaten by IPM strategies to avert pest establishment. Specifically, Deoxyribonucleic acid (DNA) sequence information was applied effectively for the identification of some micro-organisms. This technology, DNA barcoding, allows for the identification of insect species by using short, standardized gene sequences. DNA barcoding is basically based on repeatable and accessible technique that allows for the mechanisation or automation of species discrimination. This technique bridges the taxonomic bio-security gap and meets the International Plant Protection Convention diagnostic standards for insect identification. This review therefore discusses DNA barcoding as a technique for insect pests’ identification and its potential application for crop protection.
基金supported by the National Natural Science Foundation of China (41602205, 42293261)the China Geological Survey Program (DD20189506, DD20211301)+2 种基金the Special Investigation Project on Science and Technology Basic Resources of the Ministry of Science and Technology (2021FY101003)the Central Guidance for Local Scientific and Technological Development Fund of 2023the Project of Hebei University of Environmental Engineering (GCY202301)
文摘The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.
基金Supported by Philosophy and Social Science Research Project of Hubei Provincial Department of Education(22Y066).
文摘The residential area of Wuchang Vehicle Factory is taken as a case to explore the protection and renewal strategies of industrial heritage residential areas.By analyzing the current situation of the residential area,issues such as functional decline,memory loss,and weakened community vitality are revealed.Three design concepts are proposed:building renovation,historical space renovation,and the introduction of cultural and creative industries,aiming to improve the living environment,showcase historical value,cultivate cultural and creative industries,promote economic transformation,and community vitality.This paper could provide reference for the protection and renewal of similar industrial heritage residential areas,and new ideas for the research and utilization of industrial heritage.By comprehensively considering heritage protection,cultural inheritance,and community development,systematic suggestions are proposed.