期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Association of Lysosome Associated Protein Transmembrane 4 Beta Gene Polymorphism with the Risk of Pancreatic Cancer 被引量:1
1
作者 Shan Wang Qing-Yun Zhang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2010年第4期291-295,共5页
Objective: Lysosome associated protein transmembrane 4 beta (LAPTM4B) was originally identified as a gene in human hepatocellular carcinoma (HCC). It was successfully cloned by fluorescence differential display, ... Objective: Lysosome associated protein transmembrane 4 beta (LAPTM4B) was originally identified as a gene in human hepatocellular carcinoma (HCC). It was successfully cloned by fluorescence differential display, rapid amplification of cDNA ends (RACE) and reverse transcription polymerase chain reaction (RT-PCR). Previous study showed that the novel gene played an important role in the occurrence, development, migration and prognosis of tumors. Pancreatic cancer is an aggressive malignancy with the majority of patients dying within one year after diagnosis. This study tries to find out the relationship between lysosome associated protein transmembrane 4 beta gene polymorphism and the susceptibility of pancreatic cancer. Methods: A case-control study was conducted in China, including 58 pancreatic cancer cases and 156 healthy controls. Human genomic DNA was used as the template, polymerase chain reaction (PCR) was used to detect the distribution of LAPTM4B genotype. Analyses Odds ratio (OR) and corresponding 95% confidence interval (95%CI) with logistic regression were performed. Results: Two alleles of LAPTM4B generated three kinds of genotypes in population, *1/1, *1/2, and *2/2. The genotype frequency of *1/1, *1/2 and *2/2 in the pancreatic cancer group were 41.4%, 44.8% and 13.8% respectively, which were not significantly different from those of healthy group (47.4%, 42.9%, 9.6%) (P=0.773, P=0.291). Also the *2 allele frequency of LAPTM4B among pancreatic cancer had no significantly difference with the controls (P=0.354). When compared to the *1 allele, the people with *2 allele had no increased risk of pancreatic cancer. Conclusion: The gene polymorphism of LAPTM4B may not influence the susceptibility of pancreatic cancer. 展开更多
关键词 POLYMORPHISM Lysosome associated protein transmembrane 4 beta Pancreatic cancer Susceptibility
下载PDF
Thioridazine reverses trastuzumab resistance in gastric cancer by inhibiting S-phase kinase associated protein 2-mediated aerobic glycolysis
2
作者 Zheng-Yan Yang Yi-Wei Zhao +5 位作者 Jing-Rui Xue Ran Guo Zhi Zhao Han-Di Liu Zhi-Guang Ren Ming Shi 《World Journal of Gastroenterology》 SCIE CAS 2023年第45期5974-5987,共14页
BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treat... BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors. 展开更多
关键词 Gastric cancer Trastuzumab resistance THIORIDAZINE S-phase kinase associated protein 2 GLYCOLYSIS
下载PDF
Hippocampal expression of synaptic structural proteins and phosphorylated cAMP response element-binding protein in a rat model of vascular dementia induced by chronic cerebral hypoperfusion 被引量:4
3
作者 Hui Zhao Zhiyong Li +1 位作者 Yali Wang Qiuxia Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第11期821-826,共6页
The present study established a rat model of vascular dementia induced by chronic cerebral hypoperfusion through permanent ligation of bilateral common carotid arteries.At 60 days after modeling,escape latency and swi... The present study established a rat model of vascular dementia induced by chronic cerebral hypoperfusion through permanent ligation of bilateral common carotid arteries.At 60 days after modeling,escape latency and swimming path length during hidden-platform acquisition training in Morris water maze significantly increased in the model group.In addition,the number of accurate crossings over the original platform significantly decreased,hippocampal CA1 synaptophysin and growth-associated protein 43 expression significantly decreased,cAMP response element-binding protein expression remained unchanged,and phosphorylated cAMP response element-binding protein expression significantly decreased.Results suggested that abnormal expression of hippocampal synaptic structural protein and cAMP response element-binding protein phosphorylation played a role in cognitive impairment following chronic cerebral hypoperfusion. 展开更多
关键词 cAMP response element-binding protein chronic cerebral hypoperfusion growth associated protein 43 learning and memory SYNAPTOPHYSIN vascular dementia
下载PDF
Influence of chronic intermittent hypoxia on growth associated protein 43 expression in the hippocampus of young rats 被引量:4
4
作者 Yan Chen Chunling Zhao +2 位作者 Chunlai Zhang Lirong Luo Guang Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第16期1241-1246,共6页
This study aimed to explore the pathological change to hippocampal neurons and the expression of growth associated protein 43 in 21-day-old young rats following chronic intermittent hypoxia. Hematoxylin-eosin staining... This study aimed to explore the pathological change to hippocampal neurons and the expression of growth associated protein 43 in 21-day-old young rats following chronic intermittent hypoxia. Hematoxylin-eosin staining results showed varying degrees of degeneration and necrosis in hippocampal neurons depending on the modeling time. Immunohistochemistry revealed that growth associated protein 43 expression in young rats following chronic intermittent hypoxia decreased, but that levels were still higher than those of normal rats at each time point, especially 4 weeks after modeling. During 1 5 weeks after modeling, a slow growth in rat weight was observed. Experimental findings indicate that chronic intermittent hypoxia may induce growth dysfunction and necrosis of hippocampal neurons, as well as increase the expression of growth associated protein 43 in young rats. 展开更多
关键词 chronic intermittent hypoxia brain injury growth associated protein 43 obstructive sleep apneahypopnea syndrome HIPPOCAMPUS young rats neural regeneration
下载PDF
Correlation between synaptic plasticity, associated proteins, and rehabilitation training in a rat model of cerebral infarction 被引量:2
5
作者 Dan Yang Qian Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第6期670-673,共4页
All motions provide sensory, motoric, and reflexive input to the central nervous system, as well as playing an important role in cerebral functional plasticity and compensation. Cerebral plasticity has become the theo... All motions provide sensory, motoric, and reflexive input to the central nervous system, as well as playing an important role in cerebral functional plasticity and compensation. Cerebral plasticity has become the theoretical basis of neurorehabilitation. Studies of cerebrovascular disease, in particular, demonstrate that regeneration is accompanied by multiple forms of plasticity, such as functional and structural, in different phases of stroke rehabilitation. This study was designed to measure synaptic plasticity and expression of associated proteins to analyze the effect of rehabilitation training on learning and memory in a rat model of cerebral infarction. Results suggest that rehabilitation training increases expression of nerve growth factor associated protein 43, brain-derived neurotrophic factor, and neural cell adhesion molecules, and also promotes cerebral functional plasticity. 展开更多
关键词 cerebral infarction rehabilitation training synaptic plasticity associated protein RATS
下载PDF
Desensitization of G-protein-coupled receptors induces vascular hypocontractility in response to norepinephrine in the mesenteric arteries of cirrhotic patients and rats 被引量:1
6
作者 Wei Chen Jiang-Yong Sang +4 位作者 De-Jun Liu Jun Qin Yan-Miao Huo Jia Xu Zhi-Yong Wu 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2013年第3期295-304,共10页
BACKGROUND: The increased β-arrestin-2 and its combination with G-protein-coupled receptors (GPCRs) lead to GPCRs desensitization. The latter may be responsible for decreased contractile reactivity in the mesenteric ... BACKGROUND: The increased β-arrestin-2 and its combination with G-protein-coupled receptors (GPCRs) lead to GPCRs desensitization. The latter may be responsible for decreased contractile reactivity in the mesenteric arteries of cirrhotic patients and rats. The present study is to investigate the machinery changes of α-adrenergic receptors and G proteins and their roles in the contractility of mesenteric arteries of cirrhotic patients and animal models. METHODS: Patients with cirrhosis due to hepatitis B and cirrhotic rats induced by CCl 4 were studied. Mesenteric artery contractility in response to norepinephrine was determined by a vessel perfusion system. The contractile effect of G protein-coupled receptor kinase-2 (GRK-2) inhibitor on the mesenteric artery was evaluated. The protein expression of the α 1 adrenergic receptor, G proteins, β-arrestin-2, GRK-2 as well as the activity of Rho associated coiled-coil forming protein kinase-1 (ROCK-1) were measured by Western blot. In addition, the interaction of α 1 adrenergic receptor with β-arrestin-2 was assessed by co-immunoprecipitation. RESULTS: The portal vein pressure of cirrhotic patients and rats was significantly higher than that of controls. The doseresponse curve to norepinephrine in mesenteric arteriole was shifted to the right, and EC 50 was significantly increased in cirrhotic patients and rats. There were no significant differences in the expressions of the α 1 adrenergic receptor and G proteins in the cirrhotic group compared with the controls. However, the protein expressions of GRK-2 and β-arrestin-2 were significantly elevated in cirrhotic patients and rats compared with those of the controls. The interaction of the α 1 adrenergic receptor and β-arrestin-2 was significantly aggravated. This interaction was significantly reversed by GRK-2 inhibitor. Both the protein expression and activity of ROCK-1 were significantly decreased in the mesenteric artery in patients with cirrhosis compared with those of the controls, and this phenomenon was not shown in the cirrhotic rats. Norepinephrine significantly increased the activity of ROCK-1 in normal rats but not in cirrhotic ones. Norepinephrine significantly increased ROCK-1 activity in cirrhotic rats when GRK-2 inhibitor was used. CONCLUSIONS: β-arrestin-2 expression and its interaction with GPCRs are significantly upregulated in the mesenteric arteries in patients and rats with cirrhosis. These upregulations result in GPCR desensitization, G-protein dysfunction and ROCK inhibition. These may explain the decreased contractility of the mesenteric artery in response to vasoconstrictors. 展开更多
关键词 portal hypertension DESENSITIZATION G-protein-coupled receptors β-arrestin-2 Rho associated coiled-coil forming protein kinase
下载PDF
Nimbolide inhibits tumor growth by restoring hepatic tight junction protein expression and reduced inflammation in an experimental hepatocarcinogenesis 被引量:1
7
作者 Amit Kumar Ram Balasubramaniyan Vairappan BH Srinivas 《World Journal of Gastroenterology》 SCIE CAS 2020年第45期7131-7152,共22页
BACKGROUND Altered tight junction(TJ)proteins are correlated with carcinogenesis and tumor development.Nimbolide is a tetranotriterpenoid that has been shown to have antioxidant and anti-proliferative properties;howev... BACKGROUND Altered tight junction(TJ)proteins are correlated with carcinogenesis and tumor development.Nimbolide is a tetranotriterpenoid that has been shown to have antioxidant and anti-proliferative properties;however,its anticancer effects and molecular mechanism in hepatocellular carcinoma(HCC)remains obscure.AIM To investigate the effect of nimbolide on TJ proteins,cell cycle progression,and hepatic inflammation in a mouse model of HCC.METHODS HCC was induced in male Swiss albino mice(CD-1 strain)by a single intraperitoneal injection of 100 mg/kg diethylnitrosamine(DEN)followed by 80 ppm N-nitrosomorpholine(NMOR)in drinking water for 28 wk.After 28 wk,nimbolide(6 mg/kg)was given orally for four consecutive weeks in DEN/NMOR induced HCC mice.At the end of the 32nd week,all the mice were sacrificed and blood and liver samples were collected for various analyses.Macroscopic examinations of hepatic nodules were assessed.Liver histology and HCC tumor markers such as alpha-fetoprotein(AFP)and glypican-3 were measured.Expression of TJ proteins,cell proliferation,and cell cycle markers,inflammatory markers,and oxidative stress markers were analyzed.In silico analysis was performed to confirm the binding and modulatory effect of nimbolide on zonula occludens 1(ZO-1),nuclear factor of kappa light polypeptide gene enhancer in B-cells(NF-κB),and tumor necrosis factor alpha(TNF-α).RESULTS We found nimbolide treatment at a concentration of 6 mg/kg to HCC mice reduced hepatic tumor size by 52.08%and tumor volume(P<0.01),and delayed tumor growth in HCC mice with a concomitant reduction in tumor markers such as AFP levels(P<0.01)and glypican-3 expression(P<0.05).Furthermore,nimbolide treatment increased tight junction proteins such as ZO-1 and occludin expression(P<0.05,respectively)and reduced ZO-1 associated nucleic acid binding protein expression(P<0.001)in HCC mice liver.Nimbolide treatment to HCC mice also inhibited cell proliferation and suppressed cell cycle progression by attenuating proliferating cell nuclear antigen(P<0.01),cyclin dependent kinase(P<0.05),and CyclinD1(P<0.05)expression.In addition,nimbolide treatment to HCC mice ameliorated hepatic inflammation by reducing NF-κB,interleukin 1 beta and TNF-αexpression(P<0.05,respectively)and abrogated oxidative stress by attenuating 4-hydroxynonenal expression(P<0.01).Molecular docking studies further confirmed that nimbolide interacts with ZO-1,NF-κB,and TNF-α.CONCLUSION Our current study showed for the first time that nimbolide exhibits anticancer effect by reducing tumor size,tumor burden and by suppressing cell cycle progression in HCC mice.Furthermore,nimbolide treatment to HCC mice ameliorated inflammation and oxidative stress,and improved TJ proteins expression.Consequently,nimbolide could be potentially used as a natural therapeutic agent for HCC treatment,however further human studies are warranted. 展开更多
关键词 Hepatocellular carcinoma Nimbolide Tight junction INFLAMMATION Oxidative stress Zonula occludens 1 associated nucleic acid binding protein
下载PDF
Expression of multidrug resistance proteins in retinoblastoma 被引量:1
8
作者 Swati Shukla Arpna Srivastava +6 位作者 Sunil Kumar Usha Singh Sandeep Goswami Bhavna Chawla Mandeep Singh Bajaj Seema Kashyap Jasbir Kaur 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第11期1655-1661,共7页
AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance.METHODS: Three anticancer drug resistant Y79 human RB cells were generated against... AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance.METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy(PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents(vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells.RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein(P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1(Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associatedprotein(Lrp) was observed in the drug resistant Y79 cells as well as in PCNC.CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. 展开更多
关键词 retinoblastoma chemotherapy multidrug resistance multidrug resistance associated proteins
下载PDF
Volatile of alkyd varnish inhibits the expression of neuronal growth associated protein-43 in mice
9
作者 Qian Huang Hongxia Wang Wei Zou 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第6期331-334,共4页
BACKGROUND: Studies have demonstrated that coating materials used commonly in the interior decoration contain volatile of alkyd varnish, which has obvious effects on the structure of endothelial cells of respiratory ... BACKGROUND: Studies have demonstrated that coating materials used commonly in the interior decoration contain volatile of alkyd varnish, which has obvious effects on the structure of endothelial cells of respiratory tract. OBJECTIVE: To observe the effects of volatile of alkyd varnish in the decoration materials on the expression of neuronal growth associated protein-43 (GAP-43) in mice, and to analyze the influencing mechanism of interior environmental pollutants for brain mechanism. DESIGN: A randomized grouping and controlled experiment. SETTING: College of Life Science, Liaoning Normal University. MATERIALS: This study was carried out in the College of Life Science, Liaoning Normal University between February and December 2006. Twenty one-month-old Kunming mice, weighing (20 ± 2 ) g, male and female in half, were involved in this study. The involved mice were divided into 2 groups by random lot method: chronic poisoning group (n =10) and control group (n =10). Alkyd varnish used commonly for house decoration was purchased from Furnishing World of Liberation Plaza of Dalian City. Alkyd varnish used commonly for house decoration was purchased from Furnishing World of Liberation Plaza of Dalian City. Rabbit GAP-43 polyclonal antibody, rat β -actin monoclonal antibody, goat anti-rat IgG-HRP and goat ant-rabbit IgG-HRP were purchased from Boster Company (Wuhan). ECL was purchased from Amersham Company (Britain), other related reagents were all purchased from Sigma Company and Promega Company (USA). All the other reagents were home-made analytical pure. METHODS: ①Poisoning test: The mice were poisoned by static inhalation poisoning method. Mice in the chronic poisoning group were placed in the 0.024 m^3 poisoning cabinet. Alkyd varnish (8 g, 3-time dosage of house decoration) was daily spread once on a 40 cm × 21 cm kraft paper evenly. Mice were poisoned for 14 hours within 3 weeks successively. Mice in the control group were placed in the same environment without alkyd varnish, and the poisoning method was the same as that of chronic poisoning group. ② Experimental evaluation: content of protein in the cortex, cerebellum and hippocampus of mice was measured separately by Bradford method. GAP-43 expression in the hippocampus and cortex was observed separately by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). MAIN OUTCOME MEASURES: Content of protein and expression of GAP-43 in different brain regions of mice. RESULTS: Twenty mice were involved in the final analysis. ① Content of protein in the cerebellum and hippocampus of mice in the chronic poisoning group was decreased a little, separately (P 〉 0.05). ② GAP-43 expression in the hippocampus of mice of the chronic poisoning group was significantly lower than that of the control group(P 〈 0.05). CONCLUSION: Long-term action of volatile of alkyd varnish can inhibit the brain functions of mice by depressing the GAP-43 expression in hippocampus of mice. 展开更多
关键词 alkyd varnish HIPPOCAMPUS growth associated protein MICE
下载PDF
Reduced expression of α-tocopherol-associated protein is associated with tumor cell proliferation and the-increased risk of prostate cancer recurrence
10
作者 Xing-Qiao Wen Xiao-Juan Li +5 位作者 Zu-Lan Su Yong Liu Xiang-Fu Zhou Yu-Bin Cai Wen-Tao Huang Xin Gao 《Asian Journal of Andrology》 SCIE CAS CSCD 2007年第2期206-212,共7页
Aim: To examine the impact and prognostic significance of α-tocopherol associated protein (TAP) expression in a series of prostate cancer patients. Methods: Tissues from 87 patients underwent radical prostatectom... Aim: To examine the impact and prognostic significance of α-tocopherol associated protein (TAP) expression in a series of prostate cancer patients. Methods: Tissues from 87 patients underwent radical prostatectomy were examined for TAP expression by immunohistochemistry. The relationships of the staining results, the clinic pathological characteristics and the recurrence times were analyzed. Results: Compared with the adjacent areas of normal and benign glands, immunoreactivity of TAP was reduced in areas of prostate cancer. A lower TAP-positive cell number per mm^2 of the largest cancer area (defined as TAP-PN) was associated with higher clinical stage (r = -0.248, P = 0.0322). Inverse associations were found among the TAP-PN and positive lymph nodes (r = -0.231, P = 0.0325), preoperative prostatespecific antigen (PSA) levels (r = -0.423, P = 0.0043), tumor size (r = -0.315, P = 0.0210) and elevated tumor cell proliferation, which was indicated by the staining of Ki-67 (r = -0.308, P = 0.0026). TAP-PN was a significant predictor of recurrence univariately (P = 0.0006), as well as multivariately, adjusted for known markers including preoperative PSA, clinical stage, Gleason score, surgical margin, extra-prostatic extension, seminal vesicle invasion and lymph node metastasis (P = 0.0012). Conclusion: Reduced expression of TAP was associated with the cell proliferation status of prostate cancer, adverse pathological parameters and the increased risk of recurrence. 展开更多
关键词 α-tocopherol associated protein prostate neoplasms RECURRENCE vitamin E
下载PDF
Effects of cyclooxygenase 2 inhibitor on growth-associated protein 43 and nerve growth factor expression in dorsal root ganglion during neuropathic pain development
11
作者 Chen Wang Zhenwei Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第10期749-755,共7页
BACKGROUND: Inflammatory responses in injured nerves have been recognized as important factors for initially sensitizing nociceptive neurons. Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandin synthe... BACKGROUND: Inflammatory responses in injured nerves have been recognized as important factors for initially sensitizing nociceptive neurons. Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandin synthesis, and COX-2 inhibitor is involved in mechanisms of analgesia and anti-inflammation. OBJECTIVE: To investigate the effects of COX-2 inhibitor on thermal and mechanical hyperalgesia, as well as expression of growth associated protein 43 (GAP-43) and nerve growth factor (NGF) in dorsal root ganglion, in a rat model of neuropathic pain due to chronic constriction injury. DESIGN, TIME AND SETTING: A randomized, controlled, comparison study that was performed at the Surgical Department and Pathological Laboratory, Second Affiliated Hospital of Shantou University Medical College from September 2006 to September 2007. MATERIALS: COX-2 inhibitor, Iornoxicam, was purchased from Nycomed Pharmaceutical (Austria); rabbit anti-GAP-43, and rabbit anti-NGF polyclonal antibodies were purchased from Boster, Wuhan, China. METHODS: A total of 50 adult, Wistar rats were randomly assigned to four groups: normal control (n = 5), model (n = 15), normal saline control (n = 15), and Iornoxicam treatment (n =15). With exception of the control group, the sciatic nerve of all rats was loosely ligated to establish a model of chronic constriction injury. The model rats were divided into three subgroups according to varying post-operative survival periods: 3, 7 and 14 days (n = 5), respectively. Rats in the Iornoxicam treatment group were intraperitoneally injected with 1.3 mg/kg lornoxicam every 12 hours throughout the entire experimental procedure. Rats in the normal saline control group were intraperitoneally injected with 1.3 mL/kg saline. MAIN OUTCOME MEASURES: Immunohistochemistry revealed expression of GAP-43 and NGF in the L5 dorsal root ganglions. Mechanical withdrawal threshold and thermal withdrawal latency were used to observe neurological behavioral changes in rats. RESULTS: The relative gray values of GAP-43- and NGF-positive neurons in the model group were remarkably increased compared with the normal control rats (P 〈 0.01), while the relative gray values in the Iomoxicam treatment group were significantly less than the model and normal saline control groups (P 〈 0.01). Mechanical withdrawal threshold and thermal withdrawal latency gradually decreased with increasing injury time in the model, normal saline control, and Iornoxicam treatment groups, and were significantly less than the normal control group (P 〈 0.05). In addition, mechanical withdrawal threshold and thermal withdrawal latency were significantly greater in the Iornoxicam treatment group compared with the model and normal saline control groups (P 〈 0.05). CONCLUSION: Intraperitoneal injection of the COX-2 inhibitor Iornoxicam attenuated mechanical and thermal hyperalgesia induced by sciatic nerve chronic constriction injury and inhibited the increased expression of GAP-43 and NGF. 展开更多
关键词 growth associated protein nerve growth factor neuropathic pain cyclooxygenase inhibitor Iomoxicam dorsal root ganglion
下载PDF
The43,000Growth - associated Protein Functions as a Negative Growth Regulator in Glioma. 被引量:1
12
作者 Huang ZY Wu Y +1 位作者 Burke SP Gutmann DH 《中国神经肿瘤杂志》 2003年第2期97-97,共1页
Previous molecular analyses of human astrocytomas have identified many genetic changes associated with astrocy-toma formation and progression.In an effort to identify novel gene expression changes associated with astr... Previous molecular analyses of human astrocytomas have identified many genetic changes associated with astrocy-toma formation and progression.In an effort to identify novel gene expression changes associated with astrocytomaformation,which might reveal new potential targets for glioma therapeutic drug design,we used the B8-RAS-transgenic mouse astrocytoma model.Using multiplex gene expression profiling,we found that 展开更多
关键词 in associated protein Functions as a Negative Growth Regulator in Glioma The43 000Growth
下载PDF
CHARACTER OF TUMOR ASSOCIATED PROTEIN RECOGNIZED BY MONOCLONAL ANTIBODY AGAINST YUNNAN GEJIU LUNG CANCER
13
作者 王秦秦 陈新明 姜平 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2000年第4期251-256,共6页
关键词 cell PMC CHARACTER OF TUMOR ASSOCIATED protein RECOGNIZED BY MONOCLONAL ANTIBODY AGAINST YUNNAN GEJIU LUNG CANCER GLC McAb line HepG Hela lung
下载PDF
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:2
14
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
下载PDF
Serum response factor promotes axon regeneration following spinal cord transection injury
15
作者 Guo-Ying Feng Nai-Li Zhang +5 位作者 Xiao-Wei Liu Ling-Xi Tong Chun-Lei Zhang Shuai Zhou Lu-Ping Zhang Fei Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1956-1960,共5页
Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model ... Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model of T9-T10 spinal cord transection injury.We found that the expression of serum response factor in injured spinal cord gray matter neurons gradually increased with time,reached its peak on the 7^(th) day,and then gradually decreased.To investigate the role of serum response factor,we used lentivirus vecto rs to ove rexpress and silence serum response factor in spinal cord tissue.We found that overexpression of serum response factor promoted motor function recovery in rats with spinal cord injury.Qualitative observation of biotinylated dextran amine anterograde tra cing showed that ove rexpression of serum response factor increased nerve fibers in the injured spinal co rd.Additionally,transmission electron microscopy showed that axon and myelin sheath morphology was restored.Silencing serum response factor had the opposite effects of ove rexpression.These findings suggest that serum response factor plays a role in the recovery of motor function after spinal cord injury.The underlying mechanism may be related to the regulation of axonal regeneration. 展开更多
关键词 AXON growth associated protein 43 motor function myelin sheath NEURON REGENERATION serum response factor spinal cord spinal cord transection
下载PDF
T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer's disease mice 被引量:7
16
作者 Jing Liu Yuxin Ma +4 位作者 Sumin Tian Li Zhang Mengmeng Zhao Yaqiong Zhang Dachuan Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第16期1541-1547,共7页
Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present,... Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1-42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunodeficiency to establish an animal model of Alzhei- mer's disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was significantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-y) and hippocampal microglia-related cyto- kines (interleukin-113, tumor necrosis factor-a) correlated with the number of regenerated neural progenitor cells in the hippocampus. These results indicate that T cells promote hippocampal neurogenesis in Alzheimer's disease and T-cell immunodeficiency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer's disease mice. Our findings provide an experimental basis for understanding the role of T cells in Alzheimer's disease. 展开更多
关键词 nerve regeneration neurodegeneration Alzheimer's disease beta-amyloid 1-42 pep-tide neuronal precursors MICE microglia INTERLEUKIN-2 INTERFERON-GAMMA INTERLEUKIN-1Β tumornecrosis factor-or microtubule associated protein NSFC grant neural regeneration
下载PDF
SNARE complex in axonal guidance and neuroregeneration 被引量:2
17
作者 Fausto Ulloa Tiziana Cotrufo +2 位作者 Delia Ricolo Eduardo Soriano Sofia J. Araújo 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期386-392,共7页
Through complex mechanisms that guide axons to the appropriate routes towards their targets, axonal growth and guidance lead to neuronal system formation. These mechanisms establish the synaptic circuitry necessary fo... Through complex mechanisms that guide axons to the appropriate routes towards their targets, axonal growth and guidance lead to neuronal system formation. These mechanisms establish the synaptic circuitry necessary for the optimal performance of the nervous system in all organisms. Damage to these networks can be repaired by neuroregenerative processes which in turn can re-establish synapses between injured axons and postsynaptic terminals. Both axonal growth and guidance and the neuroregenerative response rely on correct axonal growth and growth cone responses to guidance cues as well as correct synapses with appropriate targets. With this in mind, parallels can be drawn between axonal regeneration and processes occurring during embryonic nervous system development. However, when studying parallels between axonal development and regeneration many questions still arise; mainly, how do axons grow and synapse with their targets and how do they repair their membranes, grow and orchestrate regenerative responses after injury. Major players in the cellular and molecular processes that lead to growth cone development and movement during embryonic development are the Soluble N-ethylamaleimide Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) proteins, which have been shown to be involved in axonal growth and guidance. Their involvement in axonal growth, guidance and neuroregeneration is of foremost importance, due to their roles in vesicle and membrane trafficking events. Here, we review the recent literature on the involvement of SNARE proteins in axonal growth and guidance during embryonic development and neuroregeneration. 展开更多
关键词 SNARE vesicle associated membrane protein synaptosomal associated protein AXON GUIDANCE NEUROREGENERATION nervous system cell membrane
下载PDF
Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease 被引量:11
18
作者 Isaac G. Onyango 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期19-25,共7页
Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved... Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria. 展开更多
关键词 Alzheimer's disease mitochondria BIOENERGETICS mitochondrial DNA neuroinflammation mitohormesis caloric restriction HYPOMETABOLISM MITOPHAGY mitochondrial biogenesis recombinant-human mitochondrial transcription factor A antioxidants PROTEASOME mitochondrial transcription activator-like effector nucleases clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) caloric restriction stem cells
下载PDF
7, 8-dihydroxycoumarin improves neurological function in a mouse model of sciatic nerve injury 被引量:2
19
作者 Jianshi Du Qing Zhao +2 位作者 Yingli Zhang Yu Wang Ming Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第6期445-450,共6页
In the present study, a mouse model of sciatic nerve injury was treated with intraperitoneal injection of 7, 8-dihydroxycoumarin (10, 5, or 2.5 mg/kg per day). Western blot and real-time PCR results showed that grow... In the present study, a mouse model of sciatic nerve injury was treated with intraperitoneal injection of 7, 8-dihydroxycoumarin (10, 5, or 2.5 mg/kg per day). Western blot and real-time PCR results showed that growth associated protein 43 expression was significantly increased in the L4-6 segments of the spinal cord. The amplitude and velocity of motor nerve conduction in the sciatic nerve were significantly increased in model mice. In addition, the appearance of the myelin sheath in the injured sciatic nerve was regular, with an even thickness and clear outline, and the surrounding fibroplasia was not obvious. Our results indicate that 7, 8-dihydroxycoumarin can promote the repair of injured nerve by upregulating growth associated protein 43 expression in the corresponding spinal cord segments of mice with sciatic nerve injury. 展开更多
关键词 7 8-dihydroxycoumarin growth associated protein 43 sciatic nerve peripheral nerve injury neural regeneration
下载PDF
Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats 被引量:3
20
作者 Yi Xu Shiwei Du +3 位作者 Xinguang Yu Xiao Han Jincai Hou Hao Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2053-2058,共6页
Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesize... Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchyrnal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration. 展开更多
关键词 nerve regeneration human bone marrow mesenchymal stem cells ischemic stroke neural function NEUROPROTECTION microtubule-associated protein 2 myelin basic protein growth associated protein 43 neuraxon myelin sheath DEMYELINATION axon regeneration neural regeneration
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部