期刊文献+
共找到4,784篇文章
< 1 2 240 >
每页显示 20 50 100
Effects of β-TCP Ceramics on Intracellular Ca^(2+) Concentration,Mineralization of Osteoblast and Protein Structure
1
作者 齐志涛 张启焕 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1064-1067,共4页
β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intr... β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and BSA protein structure were studied. Results showed that β-TCP could increase the intracelluar Ca2+ concentration and mineralization of osteoblast, indicating that β-TCP ceramics could take part in the organic metabolism and the degradation product had no detrimental effect on osteoblast in vitro. Furthermore, β-TCP ceramics could increase the content of α-helix and β-pleated sheet and change BSA into more ordering structure, those changes might be favorable for the biomineralization after β-TCP ceramics implanted. 展开更多
关键词 β-TCP ceramics MINERALIZATION OSTEOBLAST [Ca2+]i protein structure
下载PDF
The Evolutionary Computation Techniques for Protein Structure Prediction:A Survey
2
作者 Zou Xiu-fen,Pan Zi-shu, Kang Li-shan, Zhang Chu-yuSchool of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, ChinaState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, ChinaSchool of Life Science , Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期297-302,共6页
In this paper, the applications of evolutionary algorithm in prediction of protein secondary structure and tertiary structures are introduced, and recent studies on solving protein structure prediction problems using ... In this paper, the applications of evolutionary algorithm in prediction of protein secondary structure and tertiary structures are introduced, and recent studies on solving protein structure prediction problems using evolutionary algorithms are reviewed, and the challenges and prospects of EAs applied to protein structure modeling are analyzed and discussed. 展开更多
关键词 evolutionary algorithm BIOINFORMATICS protein structure prediction
下载PDF
Heuristic Quasi-physical Algorithm for Protein Structure Prediction
3
作者 刘景发 黄文奇 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期308-314,共7页
A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physic... A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physical algorithm for protein structure prediction problem is put forward. First, by elaborately simulating the movement of the smooth elastic balls in the physical world, the algorithm finds low energy configurations for a given monomer chain. An "off-trap" strategy is then proposed to get out of local minima. Experimental results show promising performance. For all chains with lengths 13≤n ≤55, the proposed algorithm finds states with lower energy than the putative ground states reported in literatures. Furthermore, for chain lengths n = 21, 34, and 55, the algorithm finds new low energy configurations different from those given in literatures. 展开更多
关键词 protein structure prediction Three-dimensional protein model Quasi-physical algorithm HEURISTICS
下载PDF
Application of ACO algorithm in protein structure prediction
4
作者 唐好选 曲毅 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第1期111-114,共4页
The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the &... The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained. 展开更多
关键词 protein structure prediction HP lattice model ACO algorithm
下载PDF
PHYLETIC RELATIONSHIP OF PROTEIN STRUCTURES BASED ON SPATIAL PREFERENCE OF RESIDUES
5
作者 Chun Xu QU Lu Hun LAI +2 位作者 Xiao Jie XU Xue Mei YUAN You Qi TANG 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第11期867-870,共4页
A distance measure that infers to indicate the evolutionary relationship of protein structures has been developed based on spatial preference factors of residues. The spatial preference factor is a reflection of the e... A distance measure that infers to indicate the evolutionary relationship of protein structures has been developed based on spatial preference factors of residues. The spatial preference factor is a reflection of the environment of residues in tertiary structure. Compared with the phyletic relationships derived from sequence homologies and three-dimensional structures, we find that the two lines of evolution are similar in general. This approach is applied to a group of glins here. 展开更多
关键词 PHYLETIC RELATIONSHIP OF protein structureS BASED ON SPATIAL PREFERENCE OF RESIDUES der
下载PDF
Tuning Metallic Co0.85Se Quantum Dots/Carbon Hollow Polyhedrons with Tertiary Hierarchical Structure for High-Performance Potassium Ion Batteries 被引量:7
6
作者 Zhiwei Liu Kun Han +7 位作者 Ping Li Wei Wang Donglin He Qiwei Tan Leying Wang Yang Li Mingli Qin Xuanhui Qu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期660-673,共14页
Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated i... Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage. 展开更多
关键词 Cobalt SELENIDES Quantum DOTS Potassium-ion batteries tertiary hierarchical structure HOLLOW dodecahedron
下载PDF
Insights into tertiary lymphoid structures in the solid tumor microenvironment: anti-tumor mechanism, functional regulation, and immunotherapeutic strategies 被引量:3
7
作者 Hua Zhao Hao Wang +1 位作者 Qiuru Zhou Xiubao Ren 《Cancer Biology & Medicine》 SCIE CAS CSCD 2021年第4期981-991,共11页
Tertiary lymphoid structures(TLSs)are ectopic immune cell aggregations that develop in peripheral tissues in response to a wide range of chronic inflammatory conditions,including infection,autoimmune disease,and cance... Tertiary lymphoid structures(TLSs)are ectopic immune cell aggregations that develop in peripheral tissues in response to a wide range of chronic inflammatory conditions,including infection,autoimmune disease,and cancer.In the tumor microenvironment(TME),the structures of TLSs,including B-cell-and T-cell-enriched areas indicate that the TLSs might be the local site during the initiation and maintenance of humoral and cellular immune responses against cancers.Numerous studies have evaluated the expression of TLSs in different cancer patients and their association with prognoses of cancer patients.It was shown that welldeveloped TLSs characterized by mature B cells synthesized tumor specific antibodies,which were considered as specific markers for a good prognosis.However,there are still some immunosuppressive factors existing in the TLSs that may affect anti-tumor responses.These factors include dysfunctional B cells,regulatory T cells,and T follicular regulatory cells.The complexity and heterogeneity of the TLS composition may affect the function and activity of TLSs;it is therefore essential to fully understand the function and influencing factors in TLSs.It has been reported that checkpoint inhibitors and vaccines are currently being developed to reprogram the TME by establishing mature TLSs to improve cancer immunotherapies.In this review,we focused on recent advances in TLSs in human solid tumors,including structural characteristics and classes,antitumor mechanisms,immunosuppressive factors,and TLSbased therapeutic approaches. 展开更多
关键词 tertiary lymphoid structure tumor microenvironment IMMUNOTHERAPY B cells T cells
下载PDF
Discrete Differential Geometry of <i>n</i>-Simplices and Protein Structure Analysis 被引量:1
8
作者 Naoto Morikawa 《Applied Mathematics》 2014年第16期2458-2463,共6页
This paper proposes a novel discrete differential geometry of n-simplices. It was originally developed for protein structure analysis. Unlike previous works, we consider connection between space-filling n-simplices. U... This paper proposes a novel discrete differential geometry of n-simplices. It was originally developed for protein structure analysis. Unlike previous works, we consider connection between space-filling n-simplices. Using cones of an integer lattice, we introduce tangent bundle-like structure on a collection of n-simplices naturally. We have applied the mathematical framework to analysis of protein structures. In this paper, we propose a simple encoding method which translates the conformation of a protein backbone into a 16-valued sequence. 展开更多
关键词 Differential Geometry n-Simplex DISCRETE MATHEMATICS protein structure TETRAHEDRON
下载PDF
The Earliest Discovery of the Role of Magnesium Ions on Stabilizing the Tertiary Structure of the Transfer RNA and Its Biological Significance —A Short Memoir 被引量:1
9
作者 Wangyi Liu 《Advances in Biological Chemistry》 2016年第5期147-151,共5页
In early of 1960s, I was a graduate student studying on tRNA biochemistry. In the course of the research, the magnesium ions stabilized the tertiary structure of tRNA, resulting in its resistance to enzymatic degradat... In early of 1960s, I was a graduate student studying on tRNA biochemistry. In the course of the research, the magnesium ions stabilized the tertiary structure of tRNA, resulting in its resistance to enzymatic degradation was discovered independently. The experiment of deaminated (denatured) tRNA obtained from native tRNA was designed and conducted and further proved the validity of this finding. It was found that magnesium ions could stabilize the tertiary structure of the natrive tRNA but could not stabilize structure of the deaminated tRNA. In term of the methodology, this stabilization technique has been widely applied in sequencing analysis of RNA and has greatly promoted the progress in the study of primary structure of RNA. More importantly, the stabilization of the tertiary structure of RNA by magnesium ions plays a key role both in the processing of messenger RNAs and the ribozyme activity. After our first article in Chinese was published in 1963, a paper of Nishimura & Novelli came into our note. The received date of their paper was March 22 of 1963, only 4 days earlier than that of our first paper. Thus, we and Nishimura & Novelli made almost at the same time the earliest discovery of the role of magnesium ions on stabilizing the tertiary structure of the transfer RNA and thus resulted in resistance of tRNA degradation by enzymes. However, this discovery was not initially appreciated for a period of time but was finally “visualized” and proved by X-ray crystal structure of yeast phenylalanine tRNA, which has provided more accurate information on the geometry of the magnesium-binding sites in tRNA. 展开更多
关键词 Deaminated tRNA Earliest Discovery Enzymatic Degradation Magnesium Ion tertiary structure Transfer RNA
下载PDF
Broadening environmental research in the era of accurate protein structure determination and predictions
10
作者 Mingda Zhou Tong Wang +4 位作者 Ke Xu Han Wang Zibin Li Wei-xian Zhang Yayi Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第7期169-178,共10页
The deep-learning protein structure prediction method AlphaFold2 has garnered enormous attention beyond the realm of structural biology,for its groundbreaking contribution to solving the"protein foiding problem&q... The deep-learning protein structure prediction method AlphaFold2 has garnered enormous attention beyond the realm of structural biology,for its groundbreaking contribution to solving the"protein foiding problem"In this perspective,we explore the connection between protein structure studies and environmental research,delving into the potential for addressing specific environmental challenges.Proteins are promising for environmental applications because of the functional diversity endowed by their structural complexity.However,structural studies on proteins with environmental significance remain scarce.Here,we present the opportunity to study proteins by advancing experimental determination and deep-learning prediction methods.Specifically,the latest progress in environmental research via cryogenic electron microscopy is highlighted.It allows us to determine the structure of protein complexes in their native state within cells at molecular resolution,revealing environmentally-associated structural dynamics.With the remarkable advancements in computational power and experimental resolution,the study of protein structure and dynamics has reached unprecedented depth and accuracy.These advancements will undoubtedly accelerate the establishment of comprehensive environmental protein structural and functional databases.Tremendous opportunities for protein engineering exist to enable innovative solutions for environmental applications,such as the degradation of persistent contaminants,and the recovery of valuable metals as well as rare earth elements. 展开更多
关键词 Environmental proteins protein structure Cryogenic electron microscopy protein structure prediction protein engineering Artificial Intelligence
原文传递
Non-covalent interaction between almond protein and sinapic acid: impact on protein structure and antioxidant activity 被引量:2
11
作者 Xiao Jia Xin Ning +4 位作者 Wenlin Li Qianchun Deng Xiao Yu Chen Cheng Qi Zhou 《Oil Crop Science》 2019年第4期275-284,共10页
Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond prot... Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond protein(AP)and SA.In this study,structure-affinity interaction between SA and AP,structure and antioxidant activity of proteins were investigated.Different mathematical models showed that Ka of binding SA and AP were 3.27×10^4 L/mol and 3.08×10^4 L/mol.CD(Circular dichroism)spectroscopy and FT-IR(Fourier transform infrared)spectroscopy showed that the amount of random coil andα-helix decreased whileβ-sheet increased in AP-SA complex.In combination,the interaction model of AP-SA complex was static quenching and attributed to hydrophobic interaction.Further,AP-SA complex exerted better DPPH radical scavenging ability(36.97±0.78%),ABTS+radical scavenging ability(47.26±0.45%),and higher ORAC value(2.41±0.23 M trolox/g)compared to AP.In the further,SA can be applied in protein matrix to improve film stability,gel strength and restraining fat oxidation degradation. 展开更多
关键词 ALMOND protein(AP) sinapic acid(SA) NON-COVALENT interaction structure ANTIOXIDANT activities
下载PDF
Impact of Preparation Process on the Protein Structure and on the Volatile Compounds in <i>Eisenia foetida</i>Protein Powders
12
作者 Elias Bou-Maroun Camille Loupiac +5 位作者 Aurélie Loison Bernadette Rollin Philippe Cayot Nathalie Cayot Elil Marquez Ana Luisa Medina 《Food and Nutrition Sciences》 2013年第11期1175-1183,共9页
Protein powders from Eisenia foetida were prepared using different drying processes and fractionation. Differential scanning calorimetry was used to show that heat denaturation occurred during the drying process above... Protein powders from Eisenia foetida were prepared using different drying processes and fractionation. Differential scanning calorimetry was used to show that heat denaturation occurred during the drying process above 42°C. Protein solubility was also studied. The addition of dissociating reagents allowed concluding that solubility was decreased during oven drying due to thermo denaturation including hydrogen bonds. The volatile compounds of the different powders were extracted by solid phase micro-extraction and identified by mass spectrometry. Volatile compounds were related to lipid oxidation and Maillard reactions occurring during the preparation of the powders. High drying temperatures led to more volatile compounds resulting from Maillard reactions. In the protein powder preparation process, a fractionation step led to a “pulp fraction” and a “juice fraction” of earthworms. The “pulp fraction” contained less odorant volatile compounds resulting from Maillard reactions than the “juice fraction” did. 展开更多
关键词 Eisenia foetida protein POWDER DRYING Process protein structure VOLATILE Compounds HS-SPME/GC-MS
下载PDF
A Low-Memory-Requiring and Fast Approach to Cluster Large-Scale Decoy Protein Structures
13
作者 Yate-Ching Yuan Yingzi Shang Hongzhi Li 《Open Journal of Biophysics》 2012年第3期57-63,共7页
This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component anal... This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component analysis (PCA), is an ultra-fast and low-memory-requiring clustering method. It can be two orders of magnitude faster than the commonlyused pairwise rmsd-clustering (pRMSD) when enormous of decoys are involved. Instead of N(N – 1)/2 least-square fitting of rmsd calculations and N2 memory units to store the pairwise rmsd values in pRMSD, PCAC only requires N rmsd calculations and N × P memory storage, where N is the number of structures to be clustered and P is the number of preserved eigenvectors. Furthermore, PCAC based on the covariance Cartesian matrix generates essentially the identical result as that from the reference rmsd-clustering (rRMSD). From a test of 41 protein decoy sets, when the eigenvectors that contribute a total of 90% eigenvalues are preserved, PCAC method reproduces the results of near-native selections from rRMSD. 展开更多
关键词 protein structure Predicition protein structure CLUSTER Principal Component Analysis Low-Momery-Requiring CLUSTERING Ultra-Fast CLUSTERING
下载PDF
Hierarchy of Protein Loop-Lock Structures: A New Server for the Decomposition of a Protein Structure into a Set of Closed Loops
14
作者 Simon Kogan Zakharia Frenkel +1 位作者 Oleg Kupervasser Zeev Volkovich 《Computational Molecular Bioscience》 2013年第1期1-8,共8页
HoPLLS (Hierarchy of protein loop-lock structures) (http://leah.haifa.ac.il/~skogan/Apache/mydata1/main.html) is a web server that identifies closed loops-a structural basis for protein domain hierarchy. The server is... HoPLLS (Hierarchy of protein loop-lock structures) (http://leah.haifa.ac.il/~skogan/Apache/mydata1/main.html) is a web server that identifies closed loops-a structural basis for protein domain hierarchy. The server is based on the loop-and-lock theory for structural organisation of natural proteins. We describe this web server, the algorithms for the decomposition of a 3D protein into loops and the results of scientific investigations into a structural “alphabet” of loops and locks. 展开更多
关键词 Structural ALPHABET Loop-Lock structure Web SERVER protein AMINO ACIDS
下载PDF
Visualization of protein structure relationships using constrained twin kernel embedding
15
作者 Yi Guo Jun-Bin Gao +1 位作者 Paul Kwan Xinsheng Hou 《Journal of Biomedical Science and Engineering》 2008年第2期133-140,共8页
In this paper, a recently proposed dimensional-ity reduction method called Twin Kernel Em-bedding (TKE) [10] is applied in 2-dimensional visualization of protein structure relationships. By matching the similarity mea... In this paper, a recently proposed dimensional-ity reduction method called Twin Kernel Em-bedding (TKE) [10] is applied in 2-dimensional visualization of protein structure relationships. By matching the similarity measures of the input and the embedding spaces expressed by their respective kernels, TKE ensures that both local and global proximity information are preserved simultaneously. Experiments conducted on a subset of the Structural Classification Of Pro-tein (SCOP) database confirmed the effective-ness of TKE in preserving the original relation-ships among protein structures in the lower di-mensional embedding according to their simi-larities. This result is expected to benefit sub-sequent analyses of protein structures and their functions. 展开更多
关键词 VISUALIZATION of protein structure CONSTRAINED TWIN KERNEL EMBEDDING
下载PDF
A GASVM Algorithm for Predicting Protein Structure Classes
16
作者 Longlong Liu Mingjiao Ma Tingting Zhao 《Journal of Computer and Communications》 2016年第15期46-53,共8页
The research methods of protein structure prediction mainly focus on finding effective features of protein sequences and developing suitable machine learning algorithms. But few people consider the importance of weigh... The research methods of protein structure prediction mainly focus on finding effective features of protein sequences and developing suitable machine learning algorithms. But few people consider the importance of weights of features in classification. We propose the GASVM algorithm (classification accuracy of support vector machine is regarded as the fitness value of genetic algorithm) to optimize the coefficients of these 16 features (5 features are proposed first time) in the classification, and further develop a new feature vector. Finally, based on the new feature vector, this paper uses support vector machine and 10-fold cross-validation to classify the protein structure of 3 low similarity datasets (25PDB, 1189, FC699). Experimental results show that the overall classification accuracy of the new method is better than other methods. 展开更多
关键词 protein Structural Classes protein Secondary structure Genetic Algorithm Support Vector Machine
下载PDF
Changes of structure and functional properties of rice protein in the fresh edible rice during the seed development 被引量:5
17
作者 Dan Li Mingjing Yao +3 位作者 Yang Yang Bing Wang Dongjie Zhang Na Zhang 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1850-1860,共11页
It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional proper... It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional properties of proteins at five different stages, including early milky stage(EMS), middle milky stage(MMS), late milky stage(LMS), waxy ripe stage(WS)and ripening stage(RS), during the seed development were investigated. It was found that with the seed developing, the molecular weight of fresh rice protein gradually become larger while the secondary structure changed from the highest content of disordered structure at MMS to the highest content of ordered structure at RS, which affect the surface hydrophobicity and then the functional properties of proteins, including foaming properties, emulsifying properties and oil holding capacity. Fresh rice protein at MMS has the strongest surface hydrophobicity while fresh edible rice protein at RS has the strongest oil holding capability. The results of our study can provide a theoretical basis for the application of fresh rice protein in the food industry and help to develop new fresh edible rice food. 展开更多
关键词 Fresh edible rice Rice protein protein structure Functional properties
下载PDF
Protein Structure Prediction:Challenges,Advances,and the Shift of Research Paradigms 被引量:2
18
作者 Bin Huang Lupeng Kong +8 位作者 Chao Wang Fusong Ju Qi Zhang Jianwei Zhu Tiansu Gong Haicang Zhang Chungong Yu Wei-Mou Zheng Dongbo Bu 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2023年第5期913-925,共13页
Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields,including biochemistry,medicine,physics,mathematics,and computer science.These researchers adopt ... Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields,including biochemistry,medicine,physics,mathematics,and computer science.These researchers adopt various research paradigms to attack the same structure prediction problem:biochemists and physicists attempt to reveal the principles governing protein folding;mathematicians,especially statisticians,usually start from assuming a probability distribution of protein structures given a target sequence and then find the most likely structure,while computer scientists formulate protein structure prediction as an optimization problem-finding the structural conformation with the lowest energy or minimizing the difference between predicted structure and native structure.These research paradigms fall into the two statistical modeling cultures proposed by Leo Breiman,namely,data modeling and algorithmic modeling.Recently,we have also witnessed the great success of deep learning in protein structure prediction.In this review,we present a survey of the efforts for protein structure prediction.We compare the research paradigms adopted by researchers from different fields,with an emphasis on the shift of research paradigms in the era of deep learning.In short,the algorithmic modeling techniques,especially deep neural networks,have considerably improved the accuracy of protein structure prediction;however,theories interpreting the neural networks and knowledge on protein folding are still highly desired. 展开更多
关键词 protein folding protein structure prediction Deep learning TRANSFORMER Language model
原文传递
Detection and quantitative analysis of tumor-associated tertiary lymphoid structures 被引量:1
19
作者 Man YANG Yurou CHE +9 位作者 Kezhen LI Zengyi FANG Simin LI Mei WANG Yiyao ZHANG Zhu XU Liping LUO Chuan WU Xin LAI Weidong WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2023年第9期779-795,共17页
Tumor-associated tertiary lymphoid structures(TLSs)are ectopic lymphoid formations within tumor tissue,with mainly B and T cell populations forming the organic aggregates.The presence of TLSs in tumors has been strong... Tumor-associated tertiary lymphoid structures(TLSs)are ectopic lymphoid formations within tumor tissue,with mainly B and T cell populations forming the organic aggregates.The presence of TLSs in tumors has been strongly associated with patient responsiveness to immunotherapy regimens and improving tumor prognosis.Researchers have been motivated to actively explore TLSs due to their bright clinical application prospects.Various studies have attempted to decipher TLSs regarding their formation mechanism,structural composition,induction generation,predictive markers,and clinical utilization.Meanwhile,the scientific approaches to qualitative and quantitative descriptions are crucial for TLS studies.In terms of detection,hematoxylin and eosin(H&E),multiplex immunohistochemistry(mIHC),multiplex immunofluorescence(mIF),and 12-chemokine gene signature have been the top approved methods.However,no standard methods exist for the quantitative analysis of TLSs,such as absolute TLS count,analysis of TLS constituent cells,structural features,TLS spatial location,density,and maturity.This study reviews the latest research progress on TLS detection and quantification,proposes new directions for TLS assessment,and addresses issues for the quantitative application of TLSs in the clinic. 展开更多
关键词 tertiary lymphoid structure Tumor microenvironment Chemokine signature Spatial omics Artificial intelligence Radiomics
原文传递
Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis 被引量:1
20
作者 Yi Shen Xinshuang Chu Qinghong Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期232-239,共8页
Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by subst... Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by substituting a specific residue on Helix Ⅰ, Ⅱ, and at C-terminus of antibody binding domain Z from protein A, respectively, to investigate structural evolution and binding behavior of protein A ligands at liquid-solid interfaces. Among the three affinity dextran-coated Fe_(3)O_(4) magnetic nanoparticles(Fe_(3)O_(4)@Dx MNPs), affinity MNPs with the immobilized ligand via N11C on Helix Ⅰ(Fe_(3)O_(4)@Dx-Z_(1) MNPs) had the highest helical content, and MNPs with the immobilized ligand via G29C on Helix Ⅱ(Fe_(3)O_(4)@Dx-Z_(2) MNPs) had the lowest helical content at the same pHs. It was attributed to less electrostatic attraction of ligand to negatively charged surface on Fe_(3)O_(4)@Dx-Z_(1) MNPs because of less positive charged residues on Helix Ⅰ(K6) than Helix Ⅱ(R27/K35). Among the three affinity MNPs, moreover, the highest affinity to immunoglobulin G(IgG) binding was observed on Fe_(3)O_(4)@Dx-Z_(1) MNPs in isothermal titration calorimetry measurement, further validating greater structural integrity of the ligand on Fe_(3)O_(4)@Dx-Z_(1) MNPs. Finally,the study of IgG binding on MNPs and 96-well plates showed that anchoring sites for ligand immobilization had distinct influences on IgG binding and IgG-mediated antigen binding. This work illustrated that anchoring sites of the ligands had a striking significance for the molecular structure of the ligand at liquid-solid interfaces and raised an important implication for the design and optimization of protein A chromatography and protein A-based immunoassay analysis. 展开更多
关键词 ADSORPTION Interface THERMODYNAMICS protein A ligand IMMOBILIZATION Molecular structure
下载PDF
上一页 1 2 240 下一页 到第
使用帮助 返回顶部