PDI is a molecular chaperone and plays an important role in Endoplasmic Reticulum quality control (ERQC).PDI participates in the refolding of the misfolded/unfolded proteins to maintain cellular homeostasis under diff...PDI is a molecular chaperone and plays an important role in Endoplasmic Reticulum quality control (ERQC).PDI participates in the refolding of the misfolded/unfolded proteins to maintain cellular homeostasis under differentstresses. However, bioinformatic characteristics and potential functions of PDIs in diatom Phaeodactylumtricornutum (Pt) are still unknown so far. Hence, the genome-wide characteristics of PtPDI proteins in P. tricornutumwere first studied via bioinformatic and transcriptomic methods. 42 PtPDI genes were identified from thegenome of P. tricornutum. The motif, protein structure, classification, number of introns, phylogenetic relationship,and the expression level of 42 PtPDI genes under the tunicamycin stress were analyzed. A pair of tandemduplicated genes (PtPDI15 and PtPDI18) was observed in P. tricornutum. The 42 PtPDIs with different genecharacteristics were divided into three independent clades, indicating different evolutional relationships and functionsof these PtPDIs. The 14 up-regulated PtPDI genes under the tunicamycin treatment might have a positiveeffect on the ER quality control of the unfolded/misfolded proteins, while the 7 down-regulated PtPDIs mightnegatively affect the ERQC. The characteristics of all 42 PtPDIs and their proposed working model here providea comprehensive understanding of the PtPDIs gene family. The differential expression of 21 PtPDIs will be usefulfor further functional study in the ERQC.展开更多
Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together w...Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together with enzymes such as thiol isomerase,oxidase,and reductase.This study investigated the clinical significance and potential functions of PDIA2 in glioma.Methods The expression of PDIA2 in gliomas was explored using The Cancer Genome Atlas and Gene Expression Omnibus databases.We analyzed the clinical characteristics of glioma patients and the prognostic and diagnostic value of PDIA2 expression.Kaplan-Meier and Cox regression analyses were used to examine the effect of PDIA2 expression on overall survival,progression-free interval,and disease-specific survival.Furthermore,we performed Gene Set Enrichment Analysis and immune infiltration analysis to investigate the functions of PDIA2.PDIA2 mRNA and protein expression was evaluated in cell lines and glioma tissues.Results PDIA2 was expressed at low levels in glioma patients.Kaplan-Meier survival analysis showed that glioma patients with low PDIA2 levels had a worse prognosis than those with high PDIA2 levels.Receiver operating characteristic curve analysis indicated the diagnostic and prognostic ability of PDIA2(area under the curve=0.918).Pathways associated with PD1,PI3K/AKT,cancer immunotherapy via PD1 blockade,Fceri-mediated NF-kB activation,FOXM1,and DNA repair were enriched in glioma patients with low levels of PDIA2.PDIA2 expression levels were negatively correlated with immune cell infiltrate levels.Conclusion PDIA2 levels are significantly downregulated in glioma.PDIA2 expression may be a potential biomarker for the diagnosis and prognosis of glioma patients.展开更多
pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical p...pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.展开更多
The effect of the different training samples is different for the classifier when pattern recognition system is established. The training samples were selected randomly in the past protein disulfide bond prediction me...The effect of the different training samples is different for the classifier when pattern recognition system is established. The training samples were selected randomly in the past protein disulfide bond prediction methods, therefore the prediction accuracy of protein contact was reduced. In order to improve the influence of training samples, a prediction method of protein disulfide bond on the basis of pattern selection and Radical Basis Function neural network has been brought forward in this paper. The attributes related with protein disulfide bond are extracted and coded in the method and pattern selection is used to select training samples from coded samples in order to improve the precision of protein disulfide bond prediction. 200 proteins with disulfide bond structure from the PDB database are encoded according to the encoding approach and are taken as models of training samples. Then samples are taken on the pattern selection based on the nearest neighbor algorithm and corresponding prediction models are set by using RBF neural network. The simulation experiment result indicates that this method of pattern selection can improve the prediction accuracy of protein disulfide bond.展开更多
AIM: To study the influence of redox environment of Escherichia coli (E(?) coli) cytoplasm on disulfide bond formation of recombinant proteins. METHODS: Bovine fibrobllast growth factor (BbFGF) was selected as a model...AIM: To study the influence of redox environment of Escherichia coli (E(?) coli) cytoplasm on disulfide bond formation of recombinant proteins. METHODS: Bovine fibrobllast growth factor (BbFGF) was selected as a model of simple proteins with a single disulfide bond and free cysteines. Anti-HBsAg single-chain Fv (HBscFv), an artificial multidomain protein, was selected as the model molecule of complex protein with 2 disulfide bonds. A BbFGF-producing plasmid, pJN-BbFGF, and a HBscFv producing-plasmid, pQE-HBscFv, were constructed and transformed into E(?)coli strains BL21(DE3) and M15[pREP4] respectively. At the same time, both plasmids were transformed into a reductase-deficient host strain,E(?)coli Origami(DE3). The 4 recombinant E(?)coli strains were cultured and the target proteins were purified. Solubility and bioactivity of recombinant BbFGF and HBscFv produced in different host strains were analyzed and compared respectively. RESULTS: All recombinant E(?)coli strains could efficiently produce target proteins. The level of BbFGF in BL21(DE3) was 15-23% of the total protein, and was 5-10% in Origami (DE3). In addition, 65% of the BbFGF produced in BL21(DE3) formed into inclusion body in the cytoplasm, and all the target proteins became soluble in Origami (DE3). The bioactivity of BbFGF purified from Origami(DE3) was higher than its counterpart from BL21(DE3). The ED50 of BbFGF from Origami(DE3) and BL21(DE3) was 1.6 μg/L and 2.2 μg/L, respectively. Both HBscFv formed into inclusion body in the cytoplasm of M15[pQE-HBscFv] or Origami[pQE-HBscFv]. But the supernatant of Origami [pQE-HBscFv] lysate displayed weak bioactivity and its counterpart from M15[pQE-HBscFv] did not display any bioactivity. The soluble HBscFv in Origami[pQE-HBscFv] was purified to be 1-2 mg/L and its affinity constant was determined to be 2.62×107 mol/L. The yield of native HBscFv refolded from inclusion body in M15[pQE-HBscFv] was 30-35 mg/L and the affinity constant was 1.98×107 mol/L. There was no significant difference between the bioactivity of HBscFvs refolded from the inclusion bodies produced in different host strains. CONCLUSION: Modification of the redox environment of E(?)coli cytoplasm can significantly improve the folding of recombinant disulfide-bonded proteins produced in it.展开更多
The redox state of cellular thiols is widely studied because it was recently linked to many different diseases and pathologies. In this work we quantified the concentrations of protein disulfides (PSSP) and thiol-prot...The redox state of cellular thiols is widely studied because it was recently linked to many different diseases and pathologies. In this work we quantified the concentrations of protein disulfides (PSSP) and thiol-protein mixed disulfides (XSSP) in rat tissues (liver, kidney and heart) and cells (Raw 264.7) by an improved method of XSSP and PSSP determination after oxidative stress induced by diamide. Under native and denaturing conditions, a thiol block by N-ethymaleimide was introduced to avoid thiol exchange reaction activations by protein SH groups (PSH) (PSH + XSSP ←→ PSSP + XSH) and alterations of original XSSP/PSSP levels. Low molecular weight thiols (XSH) and PSH were respectively measured by HPLC on supernatants and on corresponding pellets by DTNB (Ellman’s reagent) after dithiothreitol reduction. PSSP concentrations of liver, heart and kidney were respectively 0.304, 0.605 and 0.785 μmoles/g and after diamide exposure they were significantly augmented of about 65%-70% in liver and heart, but not in the kidney. Normal XSSP, that were -20 times lower than normal PSSP were induced by diamide in liver and heart of about 40 times, but not in kidney. Thermodynamic criteria regarding the pKa values of thiols engaged as PSSP and GSSP were used to interpret dethiolation mechanisms via thiol exchange reactions.展开更多
Newly synthesized membrane and secretory proteins in cells undergo folding in the endoplasmic reticulum with the introduction of disulfide bonds and acquire the correct three-dimensional structure. Disulfide bonds are...Newly synthesized membrane and secretory proteins in cells undergo folding in the endoplasmic reticulum with the introduction of disulfide bonds and acquire the correct three-dimensional structure. Disulfide bonds are especially important for protein folding. It has been thought that formation of protein disulfide bonds in eukaryotes is mainly carried out by an enzyme called protein disulfide isomerase. Proteins, bearing the C-terminus of amino acids sequences with His-Asp-Glu-Leu (HDEL) sequence in yeast, in the endoplasmic reticulum (ER), which is a eukaryotic cellular organelle involved in protein synthesis, processing, and transport, have been considered to recycle between ER and Golgi apparatus. The proposal for this recycling model derives from the study of an HDEL-tagged fusion protein. Here, the localization and oligosaccharide modification of protein disulfide isomerase were investigated in yeast, and showed the first direct evidence that this intrinsic ER protein transports from ER to Golgi. Results suggest that this native protein is also accessible to post-ER enzymes, and yet accumulates in the ER.展开更多
Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins.Improving the yield in K.marxianus remains a challenge and incorporating large-scale functional modules poses a tec...Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins.Improving the yield in K.marxianus remains a challenge and incorporating large-scale functional modules poses a technical obstacle in engineering.To address these issues,linear and circular yeast artificial chromosomes of K.marxianus(KmYACs)were constructed and loaded with disulfide bond formation modules from Pichia pastoris or K.marxianus.These modules contained up to seven genes with a maximum size of 15 kb.KmYACs carried telomeres either from K.marxianus or Tetrahymena.KmYACs were transferred successfully into K.marxianus and stably propagated without affecting the normal growth of the host,regardless of the type of telomeres and configurations of KmYACs.KmYACs increased the overall expression levels of disulfide bond formation genes and significantly enhanced the yield of various heterologous proteins.In high-density fermentation,the use of KmYACs resulted in a glucoamylase yield of 16.8 g/l,the highest reported level to date in K.marxianus.Transcriptomic and metabolomic analysis of cells containing KmYACs suggested increased flavin adenine dinucleotide biosynthesis,enhanced flux entering the tricarboxylic acid cycle,and a preferred demand for lysine and arginine as features of cells overexpressing heterologous proteins.Consistently,supplementing lysine or arginine further improved the yield.Therefore,KmYAC provides a powerful platform for manipulating large modules with enormous potential for industrial applications and fundamental research.Transferring the disulfide bond formation module via YACs proves to be an efficient strategy for improving the yield of heterologous proteins,and this strategy may be applied to optimize other microbial cell factories.展开更多
Enhancing the stability of biomolecules is one of the hot topics in industry.In this study,we enhanced the stability of an important protein called LEPTIN.LEPTIN is a hormone secreted by fat cells playing an essential...Enhancing the stability of biomolecules is one of the hot topics in industry.In this study,we enhanced the stability of an important protein called LEPTIN.LEPTIN is a hormone secreted by fat cells playing an essential role in body weight and composition,and its deficiency can result in several disorders.The treatment of related LEPTIN dysfunctions is often available in the form of injection.To decrease the cost and the frequency of its applications can be achieved by increasing its lifetime through engineering LEPTIN.In this study,to engineer LEPTIN,we have introduced disulfide bonds.Disulfide By Design server was used to predict the suitable nominate pairs,which suggested three pairs of amino acids to be mutated to cysteine for disulfide bond formation.Additionally,to further evaluate the effect of combined mutations,we combined these three nominated pairs to produce three more mutants.In order to assess the effect of introduced mutations,molecular dynamic(MD)simulation was performed.The result suggests that Mutant-1 is more stable in comparison to wild-type and the other mutants.Moreover,docking results showed that the introduced mutation does not affect the receptor binding performance;therefore,it can be considered a suitable choice for future protein engineering.展开更多
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ...Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induc- tion. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.展开更多
Protein disulphide isomerase (PDI) is an oxidoreductase enzyme abundant in the endoplasmic reticulum (ER). In plants, PDIs have been shown to assist the folding and deposition of seed storage proteins during the bioge...Protein disulphide isomerase (PDI) is an oxidoreductase enzyme abundant in the endoplasmic reticulum (ER). In plants, PDIs have been shown to assist the folding and deposition of seed storage proteins during the biogenesis of protein bodies in the endosperm. Cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv. Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species were reported in our previous publications. Promoter sequences of three homoeologous genes encoding typical PDI, located on chromosome group 4 of bread wheat, and PDI promoter sequence analysis of Triticum urartu, Aegilops speltoides and Aegilops tauschii had also been reported previously. In this study, we report the isolation and sequencing of a ~700 bp region, comprising ~600 bp of the putative promoter region and 88 bp of the first exon of the typical PDI gene, in five accessions each from Triticum urartu (AA), Aegilops speltoides (BB) and Aegilops tauschii (DD). Sequence analysis indicated large variation among sequences belonging to the different genomes, while close similarity was found within each species and with the corresponding homoeologous PDI sequences of Triticum aestivum cv. CS (AABBDD) resulting in an overall high conservation of the sequence conferring endosperm-specific expression.展开更多
基金the funding of Educational and Scientific Research Projects for Young and Middle-Aged Teachers in Fujian Province(Grant Number:2022JAT220693)Natural Science Foundation of Guangdong Province(Grant Number:2022A1515012141)+2 种基金the Program for University Innovation Team of Guangdong Province(Grant Number:2022KCXTD008)National Natural Science Foundation of China(92158201 and 42376001)the Innovation and Entrepreneurship Project of Shantou(201112176541391).
文摘PDI is a molecular chaperone and plays an important role in Endoplasmic Reticulum quality control (ERQC).PDI participates in the refolding of the misfolded/unfolded proteins to maintain cellular homeostasis under differentstresses. However, bioinformatic characteristics and potential functions of PDIs in diatom Phaeodactylumtricornutum (Pt) are still unknown so far. Hence, the genome-wide characteristics of PtPDI proteins in P. tricornutumwere first studied via bioinformatic and transcriptomic methods. 42 PtPDI genes were identified from thegenome of P. tricornutum. The motif, protein structure, classification, number of introns, phylogenetic relationship,and the expression level of 42 PtPDI genes under the tunicamycin stress were analyzed. A pair of tandemduplicated genes (PtPDI15 and PtPDI18) was observed in P. tricornutum. The 42 PtPDIs with different genecharacteristics were divided into three independent clades, indicating different evolutional relationships and functionsof these PtPDIs. The 14 up-regulated PtPDI genes under the tunicamycin treatment might have a positiveeffect on the ER quality control of the unfolded/misfolded proteins, while the 7 down-regulated PtPDIs mightnegatively affect the ERQC. The characteristics of all 42 PtPDIs and their proposed working model here providea comprehensive understanding of the PtPDIs gene family. The differential expression of 21 PtPDIs will be usefulfor further functional study in the ERQC.
基金the Natural Science Foundation of Southwest Medical University(No.2016XNYD217,No.2018-ZRQN-032 and No.2016LZXNYD-G03)the National Natural Science Foundation of China(No.82072780)Sichuan Science and Technology Program(No.2022YFS0630).
文摘Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together with enzymes such as thiol isomerase,oxidase,and reductase.This study investigated the clinical significance and potential functions of PDIA2 in glioma.Methods The expression of PDIA2 in gliomas was explored using The Cancer Genome Atlas and Gene Expression Omnibus databases.We analyzed the clinical characteristics of glioma patients and the prognostic and diagnostic value of PDIA2 expression.Kaplan-Meier and Cox regression analyses were used to examine the effect of PDIA2 expression on overall survival,progression-free interval,and disease-specific survival.Furthermore,we performed Gene Set Enrichment Analysis and immune infiltration analysis to investigate the functions of PDIA2.PDIA2 mRNA and protein expression was evaluated in cell lines and glioma tissues.Results PDIA2 was expressed at low levels in glioma patients.Kaplan-Meier survival analysis showed that glioma patients with low PDIA2 levels had a worse prognosis than those with high PDIA2 levels.Receiver operating characteristic curve analysis indicated the diagnostic and prognostic ability of PDIA2(area under the curve=0.918).Pathways associated with PD1,PI3K/AKT,cancer immunotherapy via PD1 blockade,Fceri-mediated NF-kB activation,FOXM1,and DNA repair were enriched in glioma patients with low levels of PDIA2.PDIA2 expression levels were negatively correlated with immune cell infiltrate levels.Conclusion PDIA2 levels are significantly downregulated in glioma.PDIA2 expression may be a potential biomarker for the diagnosis and prognosis of glioma patients.
文摘pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.
文摘The effect of the different training samples is different for the classifier when pattern recognition system is established. The training samples were selected randomly in the past protein disulfide bond prediction methods, therefore the prediction accuracy of protein contact was reduced. In order to improve the influence of training samples, a prediction method of protein disulfide bond on the basis of pattern selection and Radical Basis Function neural network has been brought forward in this paper. The attributes related with protein disulfide bond are extracted and coded in the method and pattern selection is used to select training samples from coded samples in order to improve the precision of protein disulfide bond prediction. 200 proteins with disulfide bond structure from the PDB database are encoded according to the encoding approach and are taken as models of training samples. Then samples are taken on the pattern selection based on the nearest neighbor algorithm and corresponding prediction models are set by using RBF neural network. The simulation experiment result indicates that this method of pattern selection can improve the prediction accuracy of protein disulfide bond.
基金Supported by the National Natural Science Foundation of China,No. 30371661 and No. 30400071and the Natural Science Foundation for Research Team of Guangdong Province, China, No. 2004E039213
文摘AIM: To study the influence of redox environment of Escherichia coli (E(?) coli) cytoplasm on disulfide bond formation of recombinant proteins. METHODS: Bovine fibrobllast growth factor (BbFGF) was selected as a model of simple proteins with a single disulfide bond and free cysteines. Anti-HBsAg single-chain Fv (HBscFv), an artificial multidomain protein, was selected as the model molecule of complex protein with 2 disulfide bonds. A BbFGF-producing plasmid, pJN-BbFGF, and a HBscFv producing-plasmid, pQE-HBscFv, were constructed and transformed into E(?)coli strains BL21(DE3) and M15[pREP4] respectively. At the same time, both plasmids were transformed into a reductase-deficient host strain,E(?)coli Origami(DE3). The 4 recombinant E(?)coli strains were cultured and the target proteins were purified. Solubility and bioactivity of recombinant BbFGF and HBscFv produced in different host strains were analyzed and compared respectively. RESULTS: All recombinant E(?)coli strains could efficiently produce target proteins. The level of BbFGF in BL21(DE3) was 15-23% of the total protein, and was 5-10% in Origami (DE3). In addition, 65% of the BbFGF produced in BL21(DE3) formed into inclusion body in the cytoplasm, and all the target proteins became soluble in Origami (DE3). The bioactivity of BbFGF purified from Origami(DE3) was higher than its counterpart from BL21(DE3). The ED50 of BbFGF from Origami(DE3) and BL21(DE3) was 1.6 μg/L and 2.2 μg/L, respectively. Both HBscFv formed into inclusion body in the cytoplasm of M15[pQE-HBscFv] or Origami[pQE-HBscFv]. But the supernatant of Origami [pQE-HBscFv] lysate displayed weak bioactivity and its counterpart from M15[pQE-HBscFv] did not display any bioactivity. The soluble HBscFv in Origami[pQE-HBscFv] was purified to be 1-2 mg/L and its affinity constant was determined to be 2.62×107 mol/L. The yield of native HBscFv refolded from inclusion body in M15[pQE-HBscFv] was 30-35 mg/L and the affinity constant was 1.98×107 mol/L. There was no significant difference between the bioactivity of HBscFvs refolded from the inclusion bodies produced in different host strains. CONCLUSION: Modification of the redox environment of E(?)coli cytoplasm can significantly improve the folding of recombinant disulfide-bonded proteins produced in it.
文摘The redox state of cellular thiols is widely studied because it was recently linked to many different diseases and pathologies. In this work we quantified the concentrations of protein disulfides (PSSP) and thiol-protein mixed disulfides (XSSP) in rat tissues (liver, kidney and heart) and cells (Raw 264.7) by an improved method of XSSP and PSSP determination after oxidative stress induced by diamide. Under native and denaturing conditions, a thiol block by N-ethymaleimide was introduced to avoid thiol exchange reaction activations by protein SH groups (PSH) (PSH + XSSP ←→ PSSP + XSH) and alterations of original XSSP/PSSP levels. Low molecular weight thiols (XSH) and PSH were respectively measured by HPLC on supernatants and on corresponding pellets by DTNB (Ellman’s reagent) after dithiothreitol reduction. PSSP concentrations of liver, heart and kidney were respectively 0.304, 0.605 and 0.785 μmoles/g and after diamide exposure they were significantly augmented of about 65%-70% in liver and heart, but not in the kidney. Normal XSSP, that were -20 times lower than normal PSSP were induced by diamide in liver and heart of about 40 times, but not in kidney. Thermodynamic criteria regarding the pKa values of thiols engaged as PSSP and GSSP were used to interpret dethiolation mechanisms via thiol exchange reactions.
文摘Newly synthesized membrane and secretory proteins in cells undergo folding in the endoplasmic reticulum with the introduction of disulfide bonds and acquire the correct three-dimensional structure. Disulfide bonds are especially important for protein folding. It has been thought that formation of protein disulfide bonds in eukaryotes is mainly carried out by an enzyme called protein disulfide isomerase. Proteins, bearing the C-terminus of amino acids sequences with His-Asp-Glu-Leu (HDEL) sequence in yeast, in the endoplasmic reticulum (ER), which is a eukaryotic cellular organelle involved in protein synthesis, processing, and transport, have been considered to recycle between ER and Golgi apparatus. The proposal for this recycling model derives from the study of an HDEL-tagged fusion protein. Here, the localization and oligosaccharide modification of protein disulfide isomerase were investigated in yeast, and showed the first direct evidence that this intrinsic ER protein transports from ER to Golgi. Results suggest that this native protein is also accessible to post-ER enzymes, and yet accumulates in the ER.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA0910601 and 2021YFC2100203)Shanghai Municipal Education Commission(2021-03-52)Science and Technology Research Program of Shanghai(19DZ2282100).
文摘Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins.Improving the yield in K.marxianus remains a challenge and incorporating large-scale functional modules poses a technical obstacle in engineering.To address these issues,linear and circular yeast artificial chromosomes of K.marxianus(KmYACs)were constructed and loaded with disulfide bond formation modules from Pichia pastoris or K.marxianus.These modules contained up to seven genes with a maximum size of 15 kb.KmYACs carried telomeres either from K.marxianus or Tetrahymena.KmYACs were transferred successfully into K.marxianus and stably propagated without affecting the normal growth of the host,regardless of the type of telomeres and configurations of KmYACs.KmYACs increased the overall expression levels of disulfide bond formation genes and significantly enhanced the yield of various heterologous proteins.In high-density fermentation,the use of KmYACs resulted in a glucoamylase yield of 16.8 g/l,the highest reported level to date in K.marxianus.Transcriptomic and metabolomic analysis of cells containing KmYACs suggested increased flavin adenine dinucleotide biosynthesis,enhanced flux entering the tricarboxylic acid cycle,and a preferred demand for lysine and arginine as features of cells overexpressing heterologous proteins.Consistently,supplementing lysine or arginine further improved the yield.Therefore,KmYAC provides a powerful platform for manipulating large modules with enormous potential for industrial applications and fundamental research.Transferring the disulfide bond formation module via YACs proves to be an efficient strategy for improving the yield of heterologous proteins,and this strategy may be applied to optimize other microbial cell factories.
基金supported by China Postdoctoral Science Foundation Grant(2019M661742).
文摘Enhancing the stability of biomolecules is one of the hot topics in industry.In this study,we enhanced the stability of an important protein called LEPTIN.LEPTIN is a hormone secreted by fat cells playing an essential role in body weight and composition,and its deficiency can result in several disorders.The treatment of related LEPTIN dysfunctions is often available in the form of injection.To decrease the cost and the frequency of its applications can be achieved by increasing its lifetime through engineering LEPTIN.In this study,to engineer LEPTIN,we have introduced disulfide bonds.Disulfide By Design server was used to predict the suitable nominate pairs,which suggested three pairs of amino acids to be mutated to cysteine for disulfide bond formation.Additionally,to further evaluate the effect of combined mutations,we combined these three nominated pairs to produce three more mutants.In order to assess the effect of introduced mutations,molecular dynamic(MD)simulation was performed.The result suggests that Mutant-1 is more stable in comparison to wild-type and the other mutants.Moreover,docking results showed that the introduced mutation does not affect the receptor binding performance;therefore,it can be considered a suitable choice for future protein engineering.
基金supported by the National Natural Science Foundation of China, No. 30872609
文摘Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induc- tion. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.
文摘Protein disulphide isomerase (PDI) is an oxidoreductase enzyme abundant in the endoplasmic reticulum (ER). In plants, PDIs have been shown to assist the folding and deposition of seed storage proteins during the biogenesis of protein bodies in the endosperm. Cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv. Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species were reported in our previous publications. Promoter sequences of three homoeologous genes encoding typical PDI, located on chromosome group 4 of bread wheat, and PDI promoter sequence analysis of Triticum urartu, Aegilops speltoides and Aegilops tauschii had also been reported previously. In this study, we report the isolation and sequencing of a ~700 bp region, comprising ~600 bp of the putative promoter region and 88 bp of the first exon of the typical PDI gene, in five accessions each from Triticum urartu (AA), Aegilops speltoides (BB) and Aegilops tauschii (DD). Sequence analysis indicated large variation among sequences belonging to the different genomes, while close similarity was found within each species and with the corresponding homoeologous PDI sequences of Triticum aestivum cv. CS (AABBDD) resulting in an overall high conservation of the sequence conferring endosperm-specific expression.