A major focus of systems biology is to characterize interactions between cellular compo- nents, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protei...A major focus of systems biology is to characterize interactions between cellular compo- nents, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flex- ible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to recon- struct biological networks including protein-DNA interactions, posttranslational protein modifica- tions (PTMs), lectin glycan recognition, pathogen-host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological sys- tems. We will also discuss emerging applications and future directions of protein microarray tech- nology in the global frontier.展开更多
基金the Grants awarded to HZ (Grant No. RR020839, DK082840,RO1GM076102, CA125807, CA160036 and HG006434)an F31 NRSA Predoctoral Fellowship to IU (Grant No.5F31GM096716)
文摘A major focus of systems biology is to characterize interactions between cellular compo- nents, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flex- ible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to recon- struct biological networks including protein-DNA interactions, posttranslational protein modifica- tions (PTMs), lectin glycan recognition, pathogen-host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological sys- tems. We will also discuss emerging applications and future directions of protein microarray tech- nology in the global frontier.