BACKGROUND The incidence of primary liver cancer is increasing year by year.In 2022 alone,more than 900000 people were diagnosed with liver cancer worldwide,with hepatocellular carcinoma(HCC)accounting for 75%-85%of c...BACKGROUND The incidence of primary liver cancer is increasing year by year.In 2022 alone,more than 900000 people were diagnosed with liver cancer worldwide,with hepatocellular carcinoma(HCC)accounting for 75%-85%of cases.HCC is the most common primary liver cancer.China has the highest incidence and mortality rate of HCC in the world,and it is one of the malignant tumors that seriously threaten the health of Chinese people.The onset of liver cancer is occult,the early cases lack typical clinical symptoms,and most of the patients are already in the middle and late stage when diagnosed.Therefore,it is very important to find new markers for the early detection and diagnosis of liver cancer,improve the therapeutic effect,and improve the prognosis of patients.Protein tyrosine phosphatase non-receptor 2(PTPN2)has been shown to be associated with colorectal cancer,triple-negative breast cancer,non-small cell lung cancer,and prostate cancer,but its biological role and function in tumors remain to be further studied.AIM To combine the results of relevant data obtained from The Cancer Genome Atlas(TCGA)to provide the first in-depth analysis of the biological role of PTPN2 in HCC.METHODS The expression of PTPN2 in HCC was first analyzed based on the TCGA database,and the findings were then verified by immunohistochemical staining,quantitative real-time polymerase chain reaction(qRT-PCR),and immunoblotting.The value of PTPN2 in predicting the survival of patients with HCC was assessed by analyzing the relationship between PTPN2 expression in HCC tissues and clinicopathological features.Finally,the potential of PTPN2 affecting immune escape of liver cancer was evaluated by tumor immune dysfunction and exclusion and immunohistochemical staining.RESULTS The results of immunohistochemical staining,qRT-PCR,and immunoblotting in combination with TCGA database analysis showed that PTPN2 was highly expressed and associated with a poor prognosis in HCC patients.Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that PTPN2 was associated with various pathways,including cancer-related pathways,the Notch signaling pathway,and the MAPK signaling pathway.Gene Set Enrichment Analysis showed that PTPN2 was highly expressed in various immune-related pathways,such as the epithelial mesenchymal transition process.A risk model score based on PTPN2 showed that immune escape was significantly enhanced in the high-risk group compared with the low-risk group.CONCLUSION This study investigated PTPN2 from multiple biological perspectives,revealing that PTPN2 can function as a biomarker of poor prognosis and mediate immune evasion in HCC.展开更多
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le...Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.展开更多
Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are res...Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are responsible for controlling neuronal processing;balance is achieved through opposition.During molecular mechanisms of learning and memory,kinases generally modulate positively while phosphatases modulate negatively.This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity.It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.展开更多
NF-kappaB plays a critical role in cell survival,apoptosis,and inflammatory responses.Serine/threoninespecific phosphatases(PPs)represent the second major class of enzymes that catalyze the dephosphorylation of protei...NF-kappaB plays a critical role in cell survival,apoptosis,and inflammatory responses.Serine/threoninespecific phosphatases(PPs)represent the second major class of enzymes that catalyze the dephosphorylation of proteins.The roles of PPs regulating NF-kappaB activities are poorly understood.Here we describe an RNAi-based screen to identify the PPs that involve in regulating NFkappaB signaling.Thirty-four candidate PPs siRNAs were synthesized and primarily screened by NF-kappaB reporter gene assay in HeLa cells.PHLPP,one of the protein phosphatase type 2C family members(PP2C),was identified as a positive regulator of NF-kappaB signaling.Knock-down of PHLPP dramatically attenuated TNFα-stimulated NF-kappaB transcriptional activation.Knockdown of PHLPP led to enhancement of NF-kappaB/p65 nuclear import and retention,but decreased TNFα-induced phosphorylation at Ser276 on p65.This critical phosphorylation was also drastically reduced by knock-down of PKCalpha and Akt1,two important serine/threonine kinases dephosphorylated by PHLPP.The results together suggest that PHLPP-Akt-PKC may represent an important signaling loop that activates NF-kappaB/p65 signaling through critical serine phosphorylation.展开更多
BACKGROUND Cancerous inhibitor of protein phosphatase 2A(CIP2A)is a newly discovered oncogene.It is an active cell proliferation regulatory factor that inhibits tumor apoptosis in gastric cancer(GC)cells.CIP2A is func...BACKGROUND Cancerous inhibitor of protein phosphatase 2A(CIP2A)is a newly discovered oncogene.It is an active cell proliferation regulatory factor that inhibits tumor apoptosis in gastric cancer(GC)cells.CIP2A is functionally related to chemoresistance in various types of tumors according to recent studies.The underlying mechanism,however,is unknown.Further,the primary treatment regimen for GC is oxaliplatin-based chemotherapy.Nonetheless,it often fails due to chemoresistance of GC cells to oxaliplatin.AIM The goal of this study was to examine CIP2A expression and its association with oxaliplatin resistance in human GC cells.METHODS Immunohistochemistry was used to examine CIP2A expression in GC tissues and adjacent normal tissues.CIP2A expression in GC cell lines was reduced using small interfering RNA.After confirming the silencing efficiency,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium and flow cytometry assays were used to evaluate cell proliferation and apoptosis caused by oxaliplatin treatment.Further,the key genes and protein changes were verified using realtime quantitative reverse transcription PCR and Western blotting,respectively,before and after intervention.For bioinformatics analysis,we used the R software and Bioconductor project.For statistical analysis,we used GraphPad Prism 6.0 and the Statistical Package for the Social Sciences software version 20.0(IBM,Armonk,United States).RESULTS A high level of CIP2A expression was associated with tumor size,T stage,lymph node metastasis,Tumor Node Metastasis stage,and a poor prognosis.Further,CIP2A expression was higher in GC cells than in normal human gastric epithelial cells.Using small interfering RNA against CIP2A,we discovered that CIP2A knockdown inhibited cell proliferation and significantly increased GC cell sensitivity to oxaliplatin.Moreover,CIP2A knockdown enhanced oxaliplatin-induced apoptosis in GC cells.Hence,high CIP2A levels in GC may be a factor in chemoresistance to oxaliplatin.In human GC cells,CIP2A regulated protein kinase B phosphorylation,and chemical inhibition of the protein kinase B signaling pathway was significantly associated with increased sensitivity to oxaliplatin.Therefore,the protein kinase B signaling pathway was correlated with CIP2Aenhanced chemoresistance of human GC cells to oxaliplatin.CONCLUSION CIP2A expression could be a novel therapeutic strategy for chemoresistance in GC.展开更多
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor...Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.展开更多
This editorial reviews advances in hepatocellular carcinoma(HCC)treatment,focusing on a triple therapy approach and biomarker discovery.Zhang et al discuss the synergistic potential of transarterial chemoembolization ...This editorial reviews advances in hepatocellular carcinoma(HCC)treatment,focusing on a triple therapy approach and biomarker discovery.Zhang et al discuss the synergistic potential of transarterial chemoembolization combined with tyrosine kinase inhibitors and PD-1 inhibitors.Meanwhile,Li et al identify protein tyrosine phosphatase non-receptor II(PTPN2)as a biomarker for poor prognosis and immune evasion in HCC.The studies highlight the importance of combined therapies and biomarkers in improving HCC treatment efficacy and patient outcomes,with PTPN2 emerging as a potential therapeutic target.This article supplements the aforementioned studies with more recent research advancements,focusing on the molecular mechanisms and clinical applications of biomarkers.展开更多
Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PT...Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury.展开更多
A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidat...A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidation determined the planar structure of 1.Subsequent electronic circular dichroism(ECD)experiment assigned the absolute configuration of 1.Compounds 1,2,4–6,and 10 displayed different degrees of neuroprotective activities on human neuroblastoma cells SH-SY5Y.Five compounds(1,3–5,and 13)emerged resistance to protein tyrosine phosphatase 1B(PTP1B),further kinetic analysis and molecular docking study indicated that the most potent compound 13(IC50value of 10.74±0.61μmol/L)was found as a noncompetitive inhibitor for PTP1B.Surface plasmon resonance(SPR)and molecular docking studies also demonstrated the interaction between compound 12 and Niemann-Pick C1 Like 1(NPC1L1),which has been identified as significant therapeutic target for hypercholesteremia.In addition,compounds 3,6,and 14 showed attractive inhibitory activity against the phytopathogenic fungi:Colletotrichum capsici.Therefore,library of Cladosporium metabolites is enriched and new active uses of known compounds are explored.展开更多
As a major microtubule-associated protein, tau plays an important role in promoting microtubule assembly and stabilizing microtubules. In Alzheimer’s disease(AD) and other tauopathies, the abnormally hyperphosphoryla...As a major microtubule-associated protein, tau plays an important role in promoting microtubule assembly and stabilizing microtubules. In Alzheimer’s disease(AD) and other tauopathies, the abnormally hyperphosphorylated tau proteins are aggregated into paired helical filaments and accumulated in the neurons with the form of neurofibrillary tangles. An imbalanced regulation in protein kinases and protein phosphatases is the direct cause of tau hyperphosphorylation. Among various kinases and phosphatases, glycogen synthase kinase-3β(GSK-3β) and protein phosphatase 2A(PP2A) are the most implicated. Accumulation of the hyperphosphorylated tau induces synaptic toxicity and cognitive impairments. Here, we review the upstream factors or pathways that can regulate GSK-3β or PP2A activity mainly based on our recent findings. We will also discuss the mechanisms that may underlie tau-induced synaptic toxicity.展开更多
The serine/threonine phosphatase (PP1) isoform PP1γ2, predominantly expressed in the testis, is a key enzyme in spermatozoa. High PP1γ2 catalytic activity holds motility in check in immature spermatozoa. Inhibitio...The serine/threonine phosphatase (PP1) isoform PP1γ2, predominantly expressed in the testis, is a key enzyme in spermatozoa. High PP1γ2 catalytic activity holds motility in check in immature spermatozoa. Inhibition of PP1γ2 causes motility initiation in immature spermatozoa and motility stimulation and changes in flagellar beat parameters in mature spermatozoa. The PP1γ2 isoform is present in all mammalian spermatozoa studied: mouse, rat, hamster, bovine, non-human primate and man. We have now identified at least four of its regulatory proteins that regulate distinct pools of PP1γ2 within spermatozoa. Our studies provide new insights into biochemical mechanisms underlying development and regulation of sperm motility. We hypothesize that changes in sperm PP1γ2 activity as a result of phosphorylation and reversible binding of the regulatory proteins to the catalytic subunit are critical in the development and regulation of motility and the ability of sperm to fertilize eggs. Targeted disruption of the Ppplcc gene, which encodes the PP1γ1 or PP1γ2 isoforms, causes male infertility in mice as a result of impaired spermiogenesis. Our observations suggest that, in addition to motility, the protein phosphatase PP1γ2 might play an isoform-specific function in the development of specialized flagellar structures of mammalian spermatozoa. (Asian J Androl 2007 July; 9: 445--452)展开更多
Protein phosphatase 2A(PP2A)is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes.As a confirmed tumor suppressor,PP2A activity is downregulated in tumors and its ...Protein phosphatase 2A(PP2A)is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes.As a confirmed tumor suppressor,PP2A activity is downregulated in tumors and its re-activation can induce apoptosis of cancer cells.In the brains of Alzheimer's disease(AD)patients,decreased PP2A activity also plays a key role in promoting tau hyperphosphorylation and A0 generation.In this review,we discussed compounds aiming at modulating PP2A activity in the treatment of cancer or AD.The upstream factors that inactivate PP2A in diseases have not been fully elucidated and further studies are needed.It will help for the refinement and development of novel and clinically tractable PP2A-targeted compounds or therapies for the treatment of tumor and AD.展开更多
This study is focused on the expression of an SH2 domain-truncated form of protein tyrosine phosphatase SHP-1(designated ΔSHP-1) and the preparation of its polyclonal antibodies. A cDNA fragment encoding ΔSHP-1 wa...This study is focused on the expression of an SH2 domain-truncated form of protein tyrosine phosphatase SHP-1(designated ΔSHP-1) and the preparation of its polyclonal antibodies. A cDNA fragment encoding ΔSHP-1 was amplified by PCR and then cloned into the pT7 expression vector. The recombinant pT7-ΔSHP-1 plasmid was used to transform Rosetta(DE3) E. coli cells. ΔSHP-1 was distributed in the exclusion body of E. coli cell extracts and was purified through a two-column chromatographic procedure. The purified enzyme exhibited an expected molecular weight on SDS-gels and HPLC gel filtration columns. It possesses robust tyrosine phosphatase activity and shows typical enzymatic characteristics of classic tyrosine phosphatases. To generate polyclonal anti-ΔSHP-1 antibodies, purified recombinant ΔSHP-1 was used to immunize a rabbit. The resultant anti-serum was subjected to purification on ΔSHP-1 antigen affinity chromatography. The purified polyclonal antibody displayed a high sensitivity and specificity toward ΔSHP-1. This study thus provides the essential materials for further investigating the biological function and pathological implication of SHP-1 and screening the inhibitors and activators of the enzyme for therapeutic drug development.展开更多
The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosp...The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.展开更多
Transient brain ischemia has been shown to induce hyperphosphorylation of the micro- tubule-associated protein tau. To further determine the mechanisms underlying these processes, we investigated the interaction betwe...Transient brain ischemia has been shown to induce hyperphosphorylation of the micro- tubule-associated protein tau. To further determine the mechanisms underlying these processes, we investigated the interaction between tau, glycogen synthase kinase (GSK)-313 and protein phos- phatase 2A. The results confirmed that tau protein was dephosphorylated during brain ischemia; in addition, the activity of GSK-3β was increased and the activity of protein phosphatase 2A was de- creased. After reperfusion, tau protein was hyperphosphorylated, the activity of GSK-3β was de- creased and the activity of protein phosphatase 2A remained low. Importantly, the interaction of tau with GSK-3β and protein phosphatase 2A was altered during ischemia and reperfusion. Lithium chloride could affect tau phosphorylation by regulating the interaction of tau with GSK-3β and pro- tein phosphatase 2A, and improve learning and memory ability of rats after transient brain ischemia. The present study demonstrated that it was the interaction of tau with GSK-3β and protein phos- phatase 2A, rather than their individual activities, that dominates the phosphorylation of tau in tran- sient brain ischemia. Hyperphosphorylated tau protein may play an important role in the evolution of brain injury in ischemic stroke. The neuroprotective effects of lithium chloride partly depend on the inhibition of tau phosphorylation during transient brain ischemia.展开更多
BACKGROUND Protein phosphatase 2 regulatory subunit B''alpha(PPP2R3A)gene has been reported in other tumors,but the influence of PPP2R3A gene expression on the occurrence,development,and prognosis of hepatocel...BACKGROUND Protein phosphatase 2 regulatory subunit B''alpha(PPP2R3A)gene has been reported in other tumors,but the influence of PPP2R3A gene expression on the occurrence,development,and prognosis of hepatocellular carcinoma(HCC)remains unclear.AIM To investigate whether the PPP2R3A gene could be used to predict tumor recurrence and survival of HCC patients after liver transplantation(LT).METHODS Diseased liver tissues of HCC patients after LT were collected as well as their clinical data and follow-up information.The immunohistochemical method was used to detect the expression of PPP2R3A protein in the tissues of 108 patients with primary liver cancer.Theχ2 test was used to analyze the relationship between PPP2R3A protein expression levels and the clinicopathological features of tumors.The Kaplan-Meier method was used to analyze overall postoperative survival.The COX proportional hazard model was used to analyze adverse prognostic factors.RESULTS Immunohistochemistry showed that the PPP2R3A protein was mainly expressed in the cytoplasm of HCC cells.Compared to corresponding peritumoral tissues,expression was higher in HCC tissues(P≤0.001).Correlation analysis showed that high PPP2R3A expression was correlated with preoperative serum alphafetoprotein(AFP)levels(P=0.003),tumor-node-metastasis-t stage(P≤0.001),and envelope invasion(P=0.001).Univariate analysis showed that overall survival(P≤0.001)and recurrence-free survival(P=0.025)of patients with high PPP2R3A expression(≥4 points)were poor compared to those with low expression(<4 points).The overall survival rates or recurrence-free survival rates at 1,2,and 3 years with high PPP2R3A expression were 73%,38%,and 23%or 31%,23%,and 23%,respectively.Multivariate analysis showed that high PPP2R3A expression(hazard ratio=2.900,95%confidence interval:1.411–5.960,P=0.004)was an independent survival risk factor of HCC patients after LT,and it was also an independent predictor of postoperative tumor recurrence.This study also showed in patients with AFP≥400 ng/mL,the overall survival(P≤0.001)and recurrencefree survival(P=0.023)of those with high PPP2R3A expression were significantly worse compared to those with low PPP2R3A expression.When PPP2R3A expression was low,the overall survival rate(P=0.461)or recurrence-free survival rate(P=0.072)after LT in patients with AFP<400 ng/mL and≥400 ng/mL was not significantly difference.The 1,2,and 3 year survival rate of patients with low PPP2R3A expression and AFP<400 ng/mL were 98%,80%,and 69%,respectively,while patients who met Hangzhou criteria had a posttransplant 1,2,and 3 years overall survival rate of 89%,66%,and 55%,respectively.CONCLUSION High expression of PPP2R3A might be a potential marker for predicting poor prognosis of HCC after LT.Combined with serum AFP levels,PPP2R3A might enhance the accuracy of predicting HCC outcome in patients after LT and supplement the efficacy of the Hangzhou criteria.展开更多
AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARP...AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARPE-19 cells were cultured and treated with the siRNA-PTP1B. Expression of PTP1B was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). AG1478 [a selective inhibitor of epidermal growth factor receptor (EGFR)] and PD98059 (a specific inhibitor of the activation of mitogen-activated protein kinase) were used to help to determine the PTP1B signaling mechanism. Western blot analysis verified expression of EGFR and extracellular signal-regulated kinase (ERK) in ARPE-19 cells. The effect of siRNA-PTP1B on cell differentiation was confirmed by immunostaining for α-smooth muscle actin (α-SMA) and qRT-PCR. Cell migration ability was analyzed by transwell chamber assay.RESULTSThe mRNA levels of PTP1B were reduced by siRNA-PTP1B as determined by qRT-PCR assay. SiRNA-PTP1B activated EGFR and ERK phosphorylation. α-SMA staining and qRT-PCR assay demonstrated that siRNA-PTP1B induced retinal pigment epithelium (RPE) cells to differentiate toward better contractility and motility. Transwell chamber assay proved that PTP1B inhibition improved migration activity of RPE cells. Treatment with AG1478 and PD98059 abolished siRNA-PTP1B-induced activation of EGFR and ERK, α-SMA expression and cell migration.CONCLUSIONPTP1B inhibition promoted myofibroblast differentiation and migration of ARPE-19 cells, and EGFR/ERK signaling pathway played important role in migration process.展开更多
Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 ...Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase l(PPlcb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPPlcb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPPlcb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPPlcb is extremely conserved in both amino acid and nucleotide acid levels compared with the PPlcb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXXATGG, which is different from mammalian in two positions A6 and G3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPPlcb is highly diverse in the sequence similarity and length compared with other animals, especially zebraf'lsh. The cloning and sequencing of SmPPlcb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.展开更多
3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-l,2-benzenediol (1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosph...3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-l,2-benzenediol (1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosphatase 1B (PTP1B). Based on its activity, we synthesized two new synthetic bromophenols and their methoxy derivatives from vanillin using the structure of natural bromophenol 1 as a scaffold. The structures of these bromophenols were elucidated from H NMR, 13C NMR, and high resolution electron ionization mass spectrometry as 2,3-dibromo-1-(2'-bromo-6'-(3",4"-dimethoxybenzyl)- 3 ',4 '-dimethoxybenzyl)-4,5 -dimethoxybenzene (2), 2,3-dibromo- 1 -(2 '-bromo-6'-(2 "-bromo-4",5 "-dimethoxy- benzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene (3), 3,4-dibromo-5-(2'-bromo-6'-(2"-bromo-4",5"- dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol (4) and 3,4-dibromo-5-(2'-bromo-6'-(3",4"- dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol (5). PTP1B inhibition activities of these compounds were evaluated using a colorimetric assay, and compounds 3 and 4 demonstrated interesting activity against PTP1B.展开更多
文摘BACKGROUND The incidence of primary liver cancer is increasing year by year.In 2022 alone,more than 900000 people were diagnosed with liver cancer worldwide,with hepatocellular carcinoma(HCC)accounting for 75%-85%of cases.HCC is the most common primary liver cancer.China has the highest incidence and mortality rate of HCC in the world,and it is one of the malignant tumors that seriously threaten the health of Chinese people.The onset of liver cancer is occult,the early cases lack typical clinical symptoms,and most of the patients are already in the middle and late stage when diagnosed.Therefore,it is very important to find new markers for the early detection and diagnosis of liver cancer,improve the therapeutic effect,and improve the prognosis of patients.Protein tyrosine phosphatase non-receptor 2(PTPN2)has been shown to be associated with colorectal cancer,triple-negative breast cancer,non-small cell lung cancer,and prostate cancer,but its biological role and function in tumors remain to be further studied.AIM To combine the results of relevant data obtained from The Cancer Genome Atlas(TCGA)to provide the first in-depth analysis of the biological role of PTPN2 in HCC.METHODS The expression of PTPN2 in HCC was first analyzed based on the TCGA database,and the findings were then verified by immunohistochemical staining,quantitative real-time polymerase chain reaction(qRT-PCR),and immunoblotting.The value of PTPN2 in predicting the survival of patients with HCC was assessed by analyzing the relationship between PTPN2 expression in HCC tissues and clinicopathological features.Finally,the potential of PTPN2 affecting immune escape of liver cancer was evaluated by tumor immune dysfunction and exclusion and immunohistochemical staining.RESULTS The results of immunohistochemical staining,qRT-PCR,and immunoblotting in combination with TCGA database analysis showed that PTPN2 was highly expressed and associated with a poor prognosis in HCC patients.Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that PTPN2 was associated with various pathways,including cancer-related pathways,the Notch signaling pathway,and the MAPK signaling pathway.Gene Set Enrichment Analysis showed that PTPN2 was highly expressed in various immune-related pathways,such as the epithelial mesenchymal transition process.A risk model score based on PTPN2 showed that immune escape was significantly enhanced in the high-risk group compared with the low-risk group.CONCLUSION This study investigated PTPN2 from multiple biological perspectives,revealing that PTPN2 can function as a biomarker of poor prognosis and mediate immune evasion in HCC.
基金supported by Research Start-up Funding of Shenzhen Traditional Chinese Medicine Hospital,No.2021-07(to FB)Sanming Project of Medicine in Shenzhen,No.SZZYSM 202111011(to XDQ and FB)+1 种基金Key Discipline Established by Zhejiang Province,Jiaxing City Jointly-Pain Medicine,No.2019-ss-ttyx(to LSX)Jiaxing Key Laboratory of Neurology and Pain Medicine,No.[2014]81(to LSX)。
文摘Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.
文摘Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are responsible for controlling neuronal processing;balance is achieved through opposition.During molecular mechanisms of learning and memory,kinases generally modulate positively while phosphatases modulate negatively.This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity.It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.
基金This research was supported by the National High Technology Research and Development Program of China(863 Program)(No.2006AA02Z191),the Bureau of Science and Technology of Guangzhou,China(No.2007Z1-E4041)Guangzhou Economic&Technological Development District(GETDD S&T Project)(2007G-P029).
文摘NF-kappaB plays a critical role in cell survival,apoptosis,and inflammatory responses.Serine/threoninespecific phosphatases(PPs)represent the second major class of enzymes that catalyze the dephosphorylation of proteins.The roles of PPs regulating NF-kappaB activities are poorly understood.Here we describe an RNAi-based screen to identify the PPs that involve in regulating NFkappaB signaling.Thirty-four candidate PPs siRNAs were synthesized and primarily screened by NF-kappaB reporter gene assay in HeLa cells.PHLPP,one of the protein phosphatase type 2C family members(PP2C),was identified as a positive regulator of NF-kappaB signaling.Knock-down of PHLPP dramatically attenuated TNFα-stimulated NF-kappaB transcriptional activation.Knockdown of PHLPP led to enhancement of NF-kappaB/p65 nuclear import and retention,but decreased TNFα-induced phosphorylation at Ser276 on p65.This critical phosphorylation was also drastically reduced by knock-down of PKCalpha and Akt1,two important serine/threonine kinases dephosphorylated by PHLPP.The results together suggest that PHLPP-Akt-PKC may represent an important signaling loop that activates NF-kappaB/p65 signaling through critical serine phosphorylation.
基金Supported by This work was supported by the Natural Science Foundation of Gansu Province,China,No.17JR5RA272 and No.22JR5RA923the Research Fund Project of The First Hospital of Lanzhou University,No.ldyyyn2021-120,No.ldyyyn2020-98 and No.ldyyyn2021-30.
文摘BACKGROUND Cancerous inhibitor of protein phosphatase 2A(CIP2A)is a newly discovered oncogene.It is an active cell proliferation regulatory factor that inhibits tumor apoptosis in gastric cancer(GC)cells.CIP2A is functionally related to chemoresistance in various types of tumors according to recent studies.The underlying mechanism,however,is unknown.Further,the primary treatment regimen for GC is oxaliplatin-based chemotherapy.Nonetheless,it often fails due to chemoresistance of GC cells to oxaliplatin.AIM The goal of this study was to examine CIP2A expression and its association with oxaliplatin resistance in human GC cells.METHODS Immunohistochemistry was used to examine CIP2A expression in GC tissues and adjacent normal tissues.CIP2A expression in GC cell lines was reduced using small interfering RNA.After confirming the silencing efficiency,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium and flow cytometry assays were used to evaluate cell proliferation and apoptosis caused by oxaliplatin treatment.Further,the key genes and protein changes were verified using realtime quantitative reverse transcription PCR and Western blotting,respectively,before and after intervention.For bioinformatics analysis,we used the R software and Bioconductor project.For statistical analysis,we used GraphPad Prism 6.0 and the Statistical Package for the Social Sciences software version 20.0(IBM,Armonk,United States).RESULTS A high level of CIP2A expression was associated with tumor size,T stage,lymph node metastasis,Tumor Node Metastasis stage,and a poor prognosis.Further,CIP2A expression was higher in GC cells than in normal human gastric epithelial cells.Using small interfering RNA against CIP2A,we discovered that CIP2A knockdown inhibited cell proliferation and significantly increased GC cell sensitivity to oxaliplatin.Moreover,CIP2A knockdown enhanced oxaliplatin-induced apoptosis in GC cells.Hence,high CIP2A levels in GC may be a factor in chemoresistance to oxaliplatin.In human GC cells,CIP2A regulated protein kinase B phosphorylation,and chemical inhibition of the protein kinase B signaling pathway was significantly associated with increased sensitivity to oxaliplatin.Therefore,the protein kinase B signaling pathway was correlated with CIP2Aenhanced chemoresistance of human GC cells to oxaliplatin.CONCLUSION CIP2A expression could be a novel therapeutic strategy for chemoresistance in GC.
基金supported by the Zhejiang Province Traditional Chinese Medicine Health Science and Technology Program(2023ZL570).
文摘Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.
基金National Natural Science Foundation of China,No.U23A20398 and No.82030007and Sichuan Science and Technology Program,No.2022YFS0578.
文摘This editorial reviews advances in hepatocellular carcinoma(HCC)treatment,focusing on a triple therapy approach and biomarker discovery.Zhang et al discuss the synergistic potential of transarterial chemoembolization combined with tyrosine kinase inhibitors and PD-1 inhibitors.Meanwhile,Li et al identify protein tyrosine phosphatase non-receptor II(PTPN2)as a biomarker for poor prognosis and immune evasion in HCC.The studies highlight the importance of combined therapies and biomarkers in improving HCC treatment efficacy and patient outcomes,with PTPN2 emerging as a potential therapeutic target.This article supplements the aforementioned studies with more recent research advancements,focusing on the molecular mechanisms and clinical applications of biomarkers.
基金supported by the Natural Science Research Project of Anhui Province University, No.2023AH040394 (to TY)Hefei Comprehensive National Science Center Leading Medicine and Frontier Technology Research Institute Project, No.2023IHM01073 (to TY)the Natural Science Foundation of Anhui Province, Nos.2308085QH258 (to JW), 2008085MH246 (to TY)。
文摘Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury.
基金Supported by the China Agriculture Research System of MOF and MARA(CARS-21)the Financial Fund of the Ministry of Agriculture and Rural Affairs,China(No.NFZX2021)the National Natural Science Foundation of China(No.81973568)。
文摘A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidation determined the planar structure of 1.Subsequent electronic circular dichroism(ECD)experiment assigned the absolute configuration of 1.Compounds 1,2,4–6,and 10 displayed different degrees of neuroprotective activities on human neuroblastoma cells SH-SY5Y.Five compounds(1,3–5,and 13)emerged resistance to protein tyrosine phosphatase 1B(PTP1B),further kinetic analysis and molecular docking study indicated that the most potent compound 13(IC50value of 10.74±0.61μmol/L)was found as a noncompetitive inhibitor for PTP1B.Surface plasmon resonance(SPR)and molecular docking studies also demonstrated the interaction between compound 12 and Niemann-Pick C1 Like 1(NPC1L1),which has been identified as significant therapeutic target for hypercholesteremia.In addition,compounds 3,6,and 14 showed attractive inhibitory activity against the phytopathogenic fungi:Colletotrichum capsici.Therefore,library of Cladosporium metabolites is enriched and new active uses of known compounds are explored.
文摘As a major microtubule-associated protein, tau plays an important role in promoting microtubule assembly and stabilizing microtubules. In Alzheimer’s disease(AD) and other tauopathies, the abnormally hyperphosphorylated tau proteins are aggregated into paired helical filaments and accumulated in the neurons with the form of neurofibrillary tangles. An imbalanced regulation in protein kinases and protein phosphatases is the direct cause of tau hyperphosphorylation. Among various kinases and phosphatases, glycogen synthase kinase-3β(GSK-3β) and protein phosphatase 2A(PP2A) are the most implicated. Accumulation of the hyperphosphorylated tau induces synaptic toxicity and cognitive impairments. Here, we review the upstream factors or pathways that can regulate GSK-3β or PP2A activity mainly based on our recent findings. We will also discuss the mechanisms that may underlie tau-induced synaptic toxicity.
文摘The serine/threonine phosphatase (PP1) isoform PP1γ2, predominantly expressed in the testis, is a key enzyme in spermatozoa. High PP1γ2 catalytic activity holds motility in check in immature spermatozoa. Inhibition of PP1γ2 causes motility initiation in immature spermatozoa and motility stimulation and changes in flagellar beat parameters in mature spermatozoa. The PP1γ2 isoform is present in all mammalian spermatozoa studied: mouse, rat, hamster, bovine, non-human primate and man. We have now identified at least four of its regulatory proteins that regulate distinct pools of PP1γ2 within spermatozoa. Our studies provide new insights into biochemical mechanisms underlying development and regulation of sperm motility. We hypothesize that changes in sperm PP1γ2 activity as a result of phosphorylation and reversible binding of the regulatory proteins to the catalytic subunit are critical in the development and regulation of motility and the ability of sperm to fertilize eggs. Targeted disruption of the Ppplcc gene, which encodes the PP1γ1 or PP1γ2 isoforms, causes male infertility in mice as a result of impaired spermiogenesis. Our observations suggest that, in addition to motility, the protein phosphatase PP1γ2 might play an isoform-specific function in the development of specialized flagellar structures of mammalian spermatozoa. (Asian J Androl 2007 July; 9: 445--452)
基金grants from National Natural Science Foundation of China(No.31970964 and No.31771189)Natural Science Foundation of Hubei Province,China(No.2017CFA065)Wuhan Health and Family Planning Commission(No.WX18C17).
文摘Protein phosphatase 2A(PP2A)is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes.As a confirmed tumor suppressor,PP2A activity is downregulated in tumors and its re-activation can induce apoptosis of cancer cells.In the brains of Alzheimer's disease(AD)patients,decreased PP2A activity also plays a key role in promoting tau hyperphosphorylation and A0 generation.In this review,we discussed compounds aiming at modulating PP2A activity in the treatment of cancer or AD.The upstream factors that inactivate PP2A in diseases have not been fully elucidated and further studies are needed.It will help for the refinement and development of novel and clinically tractable PP2A-targeted compounds or therapies for the treatment of tumor and AD.
基金the Fund of Science & Technology Bureau of Jilin Province, China(Nos.20060563, 200705394 and 20080434).
文摘This study is focused on the expression of an SH2 domain-truncated form of protein tyrosine phosphatase SHP-1(designated ΔSHP-1) and the preparation of its polyclonal antibodies. A cDNA fragment encoding ΔSHP-1 was amplified by PCR and then cloned into the pT7 expression vector. The recombinant pT7-ΔSHP-1 plasmid was used to transform Rosetta(DE3) E. coli cells. ΔSHP-1 was distributed in the exclusion body of E. coli cell extracts and was purified through a two-column chromatographic procedure. The purified enzyme exhibited an expected molecular weight on SDS-gels and HPLC gel filtration columns. It possesses robust tyrosine phosphatase activity and shows typical enzymatic characteristics of classic tyrosine phosphatases. To generate polyclonal anti-ΔSHP-1 antibodies, purified recombinant ΔSHP-1 was used to immunize a rabbit. The resultant anti-serum was subjected to purification on ΔSHP-1 antigen affinity chromatography. The purified polyclonal antibody displayed a high sensitivity and specificity toward ΔSHP-1. This study thus provides the essential materials for further investigating the biological function and pathological implication of SHP-1 and screening the inhibitors and activators of the enzyme for therapeutic drug development.
文摘The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.
基金supported by the National High Technology Research and Development Program of China(863 Program),No.2012AA020905the Biological Industry Development Funds of Shenzhen,No.JC201005260093A+1 种基金the National Natural Science Foundation of China/Research Grants Council Joint Research Scheme,No.81161160570the National Natural Science Foundation of China,No.81171143the Tsinghua-Yue-Yuen Medical Sciences Fund
文摘Transient brain ischemia has been shown to induce hyperphosphorylation of the micro- tubule-associated protein tau. To further determine the mechanisms underlying these processes, we investigated the interaction between tau, glycogen synthase kinase (GSK)-313 and protein phos- phatase 2A. The results confirmed that tau protein was dephosphorylated during brain ischemia; in addition, the activity of GSK-3β was increased and the activity of protein phosphatase 2A was de- creased. After reperfusion, tau protein was hyperphosphorylated, the activity of GSK-3β was de- creased and the activity of protein phosphatase 2A remained low. Importantly, the interaction of tau with GSK-3β and protein phosphatase 2A was altered during ischemia and reperfusion. Lithium chloride could affect tau phosphorylation by regulating the interaction of tau with GSK-3β and pro- tein phosphatase 2A, and improve learning and memory ability of rats after transient brain ischemia. The present study demonstrated that it was the interaction of tau with GSK-3β and protein phos- phatase 2A, rather than their individual activities, that dominates the phosphorylation of tau in tran- sient brain ischemia. Hyperphosphorylated tau protein may play an important role in the evolution of brain injury in ischemic stroke. The neuroprotective effects of lithium chloride partly depend on the inhibition of tau phosphorylation during transient brain ischemia.
基金National Natural Science Foundation of China,No.81372595.
文摘BACKGROUND Protein phosphatase 2 regulatory subunit B''alpha(PPP2R3A)gene has been reported in other tumors,but the influence of PPP2R3A gene expression on the occurrence,development,and prognosis of hepatocellular carcinoma(HCC)remains unclear.AIM To investigate whether the PPP2R3A gene could be used to predict tumor recurrence and survival of HCC patients after liver transplantation(LT).METHODS Diseased liver tissues of HCC patients after LT were collected as well as their clinical data and follow-up information.The immunohistochemical method was used to detect the expression of PPP2R3A protein in the tissues of 108 patients with primary liver cancer.Theχ2 test was used to analyze the relationship between PPP2R3A protein expression levels and the clinicopathological features of tumors.The Kaplan-Meier method was used to analyze overall postoperative survival.The COX proportional hazard model was used to analyze adverse prognostic factors.RESULTS Immunohistochemistry showed that the PPP2R3A protein was mainly expressed in the cytoplasm of HCC cells.Compared to corresponding peritumoral tissues,expression was higher in HCC tissues(P≤0.001).Correlation analysis showed that high PPP2R3A expression was correlated with preoperative serum alphafetoprotein(AFP)levels(P=0.003),tumor-node-metastasis-t stage(P≤0.001),and envelope invasion(P=0.001).Univariate analysis showed that overall survival(P≤0.001)and recurrence-free survival(P=0.025)of patients with high PPP2R3A expression(≥4 points)were poor compared to those with low expression(<4 points).The overall survival rates or recurrence-free survival rates at 1,2,and 3 years with high PPP2R3A expression were 73%,38%,and 23%or 31%,23%,and 23%,respectively.Multivariate analysis showed that high PPP2R3A expression(hazard ratio=2.900,95%confidence interval:1.411–5.960,P=0.004)was an independent survival risk factor of HCC patients after LT,and it was also an independent predictor of postoperative tumor recurrence.This study also showed in patients with AFP≥400 ng/mL,the overall survival(P≤0.001)and recurrencefree survival(P=0.023)of those with high PPP2R3A expression were significantly worse compared to those with low PPP2R3A expression.When PPP2R3A expression was low,the overall survival rate(P=0.461)or recurrence-free survival rate(P=0.072)after LT in patients with AFP<400 ng/mL and≥400 ng/mL was not significantly difference.The 1,2,and 3 year survival rate of patients with low PPP2R3A expression and AFP<400 ng/mL were 98%,80%,and 69%,respectively,while patients who met Hangzhou criteria had a posttransplant 1,2,and 3 years overall survival rate of 89%,66%,and 55%,respectively.CONCLUSION High expression of PPP2R3A might be a potential marker for predicting poor prognosis of HCC after LT.Combined with serum AFP levels,PPP2R3A might enhance the accuracy of predicting HCC outcome in patients after LT and supplement the efficacy of the Hangzhou criteria.
基金Supported by Shandong Provincial Natural Science Foundation,China(No.ZR2012HQ004)the Research Fund for Fundamental Research Project of Qingdao(No.13-1-4-180-jch)+1 种基金the Scientific Research Fund of Huangdao District of Qingdao City(No.2014-1-74)the Young People Scientific Research Fund of Affiliated Hospital,Qingdao University(No.QDFY134)
文摘AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARPE-19 cells were cultured and treated with the siRNA-PTP1B. Expression of PTP1B was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). AG1478 [a selective inhibitor of epidermal growth factor receptor (EGFR)] and PD98059 (a specific inhibitor of the activation of mitogen-activated protein kinase) were used to help to determine the PTP1B signaling mechanism. Western blot analysis verified expression of EGFR and extracellular signal-regulated kinase (ERK) in ARPE-19 cells. The effect of siRNA-PTP1B on cell differentiation was confirmed by immunostaining for α-smooth muscle actin (α-SMA) and qRT-PCR. Cell migration ability was analyzed by transwell chamber assay.RESULTSThe mRNA levels of PTP1B were reduced by siRNA-PTP1B as determined by qRT-PCR assay. SiRNA-PTP1B activated EGFR and ERK phosphorylation. α-SMA staining and qRT-PCR assay demonstrated that siRNA-PTP1B induced retinal pigment epithelium (RPE) cells to differentiate toward better contractility and motility. Transwell chamber assay proved that PTP1B inhibition improved migration activity of RPE cells. Treatment with AG1478 and PD98059 abolished siRNA-PTP1B-induced activation of EGFR and ERK, α-SMA expression and cell migration.CONCLUSIONPTP1B inhibition promoted myofibroblast differentiation and migration of ARPE-19 cells, and EGFR/ERK signaling pathway played important role in migration process.
基金Supported by the 863 Program of China (No. AA2001628130)
文摘Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase l(PPlcb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPPlcb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPPlcb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPPlcb is extremely conserved in both amino acid and nucleotide acid levels compared with the PPlcb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXXATGG, which is different from mammalian in two positions A6 and G3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPPlcb is highly diverse in the sequence similarity and length compared with other animals, especially zebraf'lsh. The cloning and sequencing of SmPPlcb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.
基金Supported by the National Major Research Program of China"The Creation for Significant Innovative Drugs"(No.2009ZX09103-148)the Natural Science Foundation of Shandong(No.BS2009YY011)+1 种基金the Natural Science Foundation of Qingdao(No.10-3-4-8-2-JCH)the Program of Qingdao Shinan District(No.2009-HY-2-14)
文摘3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-l,2-benzenediol (1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosphatase 1B (PTP1B). Based on its activity, we synthesized two new synthetic bromophenols and their methoxy derivatives from vanillin using the structure of natural bromophenol 1 as a scaffold. The structures of these bromophenols were elucidated from H NMR, 13C NMR, and high resolution electron ionization mass spectrometry as 2,3-dibromo-1-(2'-bromo-6'-(3",4"-dimethoxybenzyl)- 3 ',4 '-dimethoxybenzyl)-4,5 -dimethoxybenzene (2), 2,3-dibromo- 1 -(2 '-bromo-6'-(2 "-bromo-4",5 "-dimethoxy- benzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene (3), 3,4-dibromo-5-(2'-bromo-6'-(2"-bromo-4",5"- dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol (4) and 3,4-dibromo-5-(2'-bromo-6'-(3",4"- dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol (5). PTP1B inhibition activities of these compounds were evaluated using a colorimetric assay, and compounds 3 and 4 demonstrated interesting activity against PTP1B.