期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Protein tyrosine phosphatase non-receptor Ⅱ:A possible biomarker of poor prognosis and mediator of immune evasion in hepatocellular carcinoma
1
作者 Hui-Yuan Li Yi-Ming Jing +5 位作者 Xue Shen Ming-Yue Tang Hong-Hong Shen Xin-Wei Li Zi-Shu Wang Fang Su 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3913-3931,共19页
BACKGROUND The incidence of primary liver cancer is increasing year by year.In 2022 alone,more than 900000 people were diagnosed with liver cancer worldwide,with hepatocellular carcinoma(HCC)accounting for 75%-85%of c... BACKGROUND The incidence of primary liver cancer is increasing year by year.In 2022 alone,more than 900000 people were diagnosed with liver cancer worldwide,with hepatocellular carcinoma(HCC)accounting for 75%-85%of cases.HCC is the most common primary liver cancer.China has the highest incidence and mortality rate of HCC in the world,and it is one of the malignant tumors that seriously threaten the health of Chinese people.The onset of liver cancer is occult,the early cases lack typical clinical symptoms,and most of the patients are already in the middle and late stage when diagnosed.Therefore,it is very important to find new markers for the early detection and diagnosis of liver cancer,improve the therapeutic effect,and improve the prognosis of patients.Protein tyrosine phosphatase non-receptor 2(PTPN2)has been shown to be associated with colorectal cancer,triple-negative breast cancer,non-small cell lung cancer,and prostate cancer,but its biological role and function in tumors remain to be further studied.AIM To combine the results of relevant data obtained from The Cancer Genome Atlas(TCGA)to provide the first in-depth analysis of the biological role of PTPN2 in HCC.METHODS The expression of PTPN2 in HCC was first analyzed based on the TCGA database,and the findings were then verified by immunohistochemical staining,quantitative real-time polymerase chain reaction(qRT-PCR),and immunoblotting.The value of PTPN2 in predicting the survival of patients with HCC was assessed by analyzing the relationship between PTPN2 expression in HCC tissues and clinicopathological features.Finally,the potential of PTPN2 affecting immune escape of liver cancer was evaluated by tumor immune dysfunction and exclusion and immunohistochemical staining.RESULTS The results of immunohistochemical staining,qRT-PCR,and immunoblotting in combination with TCGA database analysis showed that PTPN2 was highly expressed and associated with a poor prognosis in HCC patients.Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that PTPN2 was associated with various pathways,including cancer-related pathways,the Notch signaling pathway,and the MAPK signaling pathway.Gene Set Enrichment Analysis showed that PTPN2 was highly expressed in various immune-related pathways,such as the epithelial mesenchymal transition process.A risk model score based on PTPN2 showed that immune escape was significantly enhanced in the high-risk group compared with the low-risk group.CONCLUSION This study investigated PTPN2 from multiple biological perspectives,revealing that PTPN2 can function as a biomarker of poor prognosis and mediate immune evasion in HCC. 展开更多
关键词 protein tyrosine phosphatase non-receptor 2 Hepatocellular carcinoma Immune evasion BIOMARKER Immunotherapy Prognosis
下载PDF
Roles of protein tyrosine phosphatases in reproduction and related diseases
2
作者 Ruo-Heng Du Huai-Yan Chen Lu Gao 《Reproductive and Developmental Medicine》 CAS CSCD 2023年第4期252-256,共5页
Protein tyrosine phosphatases(PTPs)remove phosphate groups from protein tyrosine residues to regulate various cell signaling processes,subsequently affecting the growth,metabolism,differentiation,immune response,and o... Protein tyrosine phosphatases(PTPs)remove phosphate groups from protein tyrosine residues to regulate various cell signaling processes,subsequently affecting the growth,metabolism,differentiation,immune response,and other cellular processes.Several studies have investigated the functions of PTPs in tumor and organism immunity.However,only a few studies have focused on their roles in reproductive disorders.Therefore,in this review,we summarize the roles and underlying molecular mechanisms of PTPs in infertility,spontaneous abortion,pregnancy-induced hypertension,gestational diabetes mellitus,early embryonic developmental abnormalities,and preterm birth.This review can contribute to future research on PTPs and their potential applications as targets in the treatment of reproductive diseases. 展开更多
关键词 protein tyrosine phosphatase Embryo implantation Spontaneous abortion Pregnancy-induced hypertension Gestational diabetes mellitus Early embryonic developmental abnormalities Preterm birth
原文传递
Protein Tyrosine Phosphatases Mediate the Signaling Pathway of Stomatal Closure of Vicia faba L. 被引量:2
3
作者 Wu-LiangSHI XinLIU +1 位作者 Wen-SuoJIA Shu-QiuZHANG 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第3期319-326,共8页
: The regulation of stomatal movement is one of the most important signaling networks in plants. The H+-ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some c... : The regulation of stomatal movement is one of the most important signaling networks in plants. The H+-ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some conflicting results regarding the effectiveness of the plasma membrane H+-ATPase inhibitor, vanadate, in inhibiting stomata opening. We observed that 2 mmol/L vanadate hardly inhibited light-stimulated stomata opening in epidermal peels of Vicia faba L., but significantly inhibited dark- and ABA-induced stomatal closure. These results cannot be explained with the previous findings that H+-ATPase was inhibited by vanadate. In view of the fact that vanadate is an inhibitor of protein tyrosine phosphatases (PTPases), we investigated whether the stomatal movement regulated by vanadate is through the regulation of PTPase. As expected, phenylarsine oxide (PAO), a specific inhibitor of PTPase, has very similar effects and even more effective than vanadate. Typical PTPase activity was found in guard cells of V. faba; moreover, the phosphatase activity could be inhibited by both vanadate and PAO. These results not only provide a novel explanation for conflicting results about vanadate modulating stomatal movement, but also provide further evidence for the involvement of PTPases in modulating signal transduction of stomatal movement. 展开更多
关键词 abscisic acid (ABA) H+-ATPase protein tyrosine phosphatases stomatal movement Vicia faba L
原文传递
Protein tyrosine phosphatase 1B regulates migration of ARPE-19 cells through EGFR/ERK signaling pathway 被引量:3
4
作者 Zhao-Dong Du Li-Ting Hu +4 位作者 Gui-Qiu Zhao Qian Wang Qiang Xu Nan Jiang Jing Lin 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第5期891-897,共7页
AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARP... AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARPE-19 cells were cultured and treated with the siRNA-PTP1B. Expression of PTP1B was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). AG1478 [a selective inhibitor of epidermal growth factor receptor (EGFR)] and PD98059 (a specific inhibitor of the activation of mitogen-activated protein kinase) were used to help to determine the PTP1B signaling mechanism. Western blot analysis verified expression of EGFR and extracellular signal-regulated kinase (ERK) in ARPE-19 cells. The effect of siRNA-PTP1B on cell differentiation was confirmed by immunostaining for &#x003b1;-smooth muscle actin (&#x003b1;-SMA) and qRT-PCR. Cell migration ability was analyzed by transwell chamber assay.RESULTSThe mRNA levels of PTP1B were reduced by siRNA-PTP1B as determined by qRT-PCR assay. SiRNA-PTP1B activated EGFR and ERK phosphorylation. &#x003b1;-SMA staining and qRT-PCR assay demonstrated that siRNA-PTP1B induced retinal pigment epithelium (RPE) cells to differentiate toward better contractility and motility. Transwell chamber assay proved that PTP1B inhibition improved migration activity of RPE cells. Treatment with AG1478 and PD98059 abolished siRNA-PTP1B-induced activation of EGFR and ERK, &#x003b1;-SMA expression and cell migration.CONCLUSIONPTP1B inhibition promoted myofibroblast differentiation and migration of ARPE-19 cells, and EGFR/ERK signaling pathway played important role in migration process. 展开更多
关键词 protein tyrosine phosphatase 1B retinal pigment epithelium cell migration epidermal growth factor receptor extracellular signal-regulated kinase
下载PDF
Purification and Characterization of the Catalytic Domain of Protein Tyrosine Phosphatase SHP-1 and the Preparation of Anti-ΔSHP-1 Antibodies 被引量:3
5
作者 LI Wan-nan ZHUANG Yan +5 位作者 LI He SUN Ying FU Yao WU Xiao-xia ZHAO Zhi-zhuang FU Xue-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期592-596,共5页
This study is focused on the expression of an SH2 domain-truncated form of protein tyrosine phosphatase SHP-1(designated ΔSHP-1) and the preparation of its polyclonal antibodies. A cDNA fragment encoding ΔSHP-1 wa... This study is focused on the expression of an SH2 domain-truncated form of protein tyrosine phosphatase SHP-1(designated ΔSHP-1) and the preparation of its polyclonal antibodies. A cDNA fragment encoding ΔSHP-1 was amplified by PCR and then cloned into the pT7 expression vector. The recombinant pT7-ΔSHP-1 plasmid was used to transform Rosetta(DE3) E. coli cells. ΔSHP-1 was distributed in the exclusion body of E. coli cell extracts and was purified through a two-column chromatographic procedure. The purified enzyme exhibited an expected molecular weight on SDS-gels and HPLC gel filtration columns. It possesses robust tyrosine phosphatase activity and shows typical enzymatic characteristics of classic tyrosine phosphatases. To generate polyclonal anti-ΔSHP-1 antibodies, purified recombinant ΔSHP-1 was used to immunize a rabbit. The resultant anti-serum was subjected to purification on ΔSHP-1 antigen affinity chromatography. The purified polyclonal antibody displayed a high sensitivity and specificity toward ΔSHP-1. This study thus provides the essential materials for further investigating the biological function and pathological implication of SHP-1 and screening the inhibitors and activators of the enzyme for therapeutic drug development. 展开更多
关键词 SHP-1 protein tyrosine phosphatase Polyclonal antibodies
下载PDF
Structural Insight into the Design on Oleanolic Acid Derivatives as Potent Protein Tyrosine Phosphatase 1B Inhibitors 被引量:2
6
作者 施建成 涂文通 +1 位作者 罗敏 黄初升 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第7期1063-1076,共14页
Oleanolic acid derivatives act as newer protein tyrosine phosphatase 1B (PTP-1B) inhibitors for type 2 diabetes mellitus (T2DM). In order to understand the structural requirement of PTP-1B inhibitors, 52 oleanolic... Oleanolic acid derivatives act as newer protein tyrosine phosphatase 1B (PTP-1B) inhibitors for type 2 diabetes mellitus (T2DM). In order to understand the structural requirement of PTP-1B inhibitors, 52 oleanolic acid derivatives were divided into a training set (34 compounds) and a test set (18 compounds). The highly reliable and predictive 3D-QSAR models were constructed by CoMFA, CoMSIA and topomer CoMFA methods, respectively. The results showed that the cross validated coefficient (q2) and non-cross-validated coefficient (R2) were 0.554 and 0.999 in the CoMFA model, 0.675 and 0.971 in the CoMSIA model, and 0.628 and 0.939 in the topomer CoMFA model, which suggests that three models are robust and have good exterior predictive capabilities. Furthermore, ten novel inhibitors with much higher inhibitory potency were designed. Our design strategy was that (i) the electronegative substituents (Cl, -CH2OH, OH and -CH2Cl) were introduced into the double bond of ring C, (ii) the hydrogen bond acceptor groups (C≡N and N atom), electronegative groups (C≡N, N atom, -COOH and -COOCH3) and bulky substituents (C6H5N) were connected to the C-3 position, which would result in generating potent and selective PTP-1B inhibitors. We expect that the results in this paper have the potential to facilitate the process of design and to develop new potent PTP-1B inhibitors. 展开更多
关键词 Type 2 diabetes mellitus (T2DM) protein tyrosine phosphatase 1B (PTP-1B) inhibitor 3D-QSAR Molecular design
下载PDF
Synthesis and protein tyrosine phosphatase 1B inhibition activities of two new synthetic bromophenols and their methoxy derivatives 被引量:1
7
作者 崔永超 史大永 胡志强 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第6期1237-1242,共6页
3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-l,2-benzenediol (1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosph... 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-l,2-benzenediol (1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosphatase 1B (PTP1B). Based on its activity, we synthesized two new synthetic bromophenols and their methoxy derivatives from vanillin using the structure of natural bromophenol 1 as a scaffold. The structures of these bromophenols were elucidated from H NMR, 13C NMR, and high resolution electron ionization mass spectrometry as 2,3-dibromo-1-(2'-bromo-6'-(3",4"-dimethoxybenzyl)- 3 ',4 '-dimethoxybenzyl)-4,5 -dimethoxybenzene (2), 2,3-dibromo- 1 -(2 '-bromo-6'-(2 "-bromo-4",5 "-dimethoxy- benzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene (3), 3,4-dibromo-5-(2'-bromo-6'-(2"-bromo-4",5"- dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol (4) and 3,4-dibromo-5-(2'-bromo-6'-(3",4"- dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol (5). PTP1B inhibition activities of these compounds were evaluated using a colorimetric assay, and compounds 3 and 4 demonstrated interesting activity against PTP1B. 展开更多
关键词 protein tyrosine phosphatase 1B inhibition bromophenol derivatives SYNTHESIS
下载PDF
Expression of Peptidylarginine Deiminase 4 and Protein Tyrosine Phosphatase Nonreceptor Type 22 in the Synovium of Collagen-Induced Arthritis Rats 被引量:1
8
作者 Yan-bing Xu Nai-zhi Wang +3 位作者 Li-li Yang Hua-dong Cui Hong-xia Xue Ning Zhang 《Chinese Medical Sciences Journal》 CAS CSCD 2014年第2期85-90,共6页
Objective To study the expression level of peptidylarginine deiminase 4(PADI4) and protein tyrosine phosphatase nonreceptor type 22(PTPN22) in the synovium of rat model of collagen-induced arthritis, and to explore th... Objective To study the expression level of peptidylarginine deiminase 4(PADI4) and protein tyrosine phosphatase nonreceptor type 22(PTPN22) in the synovium of rat model of collagen-induced arthritis, and to explore their possible therapeutic role in rheumatoid arthritis. Methods Thirty-two female Wistar rats weighing 100±20 g were randomly assigned into 3-week collagen-induced arthritis(CIA) model group(n=8), 4-week CIA model group(n=8), 6-week CIA model group(n=8), and the control group(n=8). The body weight changes of each group were recorded. The expression levels of PADI4 and PTPN22 were detected and compared by the methods of immunohistochemical staining and Western blot. Results Arthritis of rat began to form 14 days after sensitization and the joint swelling reached peak at 28 days. The weights of the rats slowly grew both in CIA model groups and the control group. Immunohistochemical staining results showed that the positive expression of PADI4 and PTPN22 was mainly located in cartilage peripheral mononuclear cells, the cytoplasm of infiltrated cells, and bone marrow cavity. There were significant differences in the optical density of PADI4 and PTPN22 among CIA model groups and the control group(PADI4, 0.2898±0.012, 0.2982±0.022, 0.2974±0.031, 0.2530±0.013 in 3-week CIA model, 4-week CIA model, 6-week CIA model and control groups; PTPN22, 0.2723±0.004, 0.2781±0.010, 0.2767±0.008, 0.2422±0.019; all P <0.05). The expression bands of PADI4 were observed in Western blot 3 weeks after initial immunization, the thickest in the 4th week, and decreased in the 6th week. The expression bands of PTPN2 were observed at all the time points, with no obvious time-dependent trend. Conclusions PADI4 and PTPN22 are obviously correlated with CIA in rat model. PADI4 is expressed at early stage of the disease, while the expression of PTPN22 sustains throughout the course. 展开更多
关键词 peptidylarginine deiminase 4 protein tyrosine phosphatase nonreceptor type 22 rheumatoid arthritis rat model
下载PDF
Expression and Characterization of Catalytic Domain of T Cell Protein Tyrosine Phosphatase(ΔTC-PTP)——Immunohistochemical Study of ΔTC-PTP Expression in Non-small Cell Lung Carcinomas
9
作者 ZHU Zhi-cheng SUN Mei +6 位作者 ZHANG Xing-yi LIU Ke-xiang SHI Dong-lei LI Jin-dong SU Ji-quan XU Yue-chi FU Xue-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第3期289-296,共8页
This study objective was to express and characterize the catalytic domain of the human T cell protein tyrosine phosphatase(△TC-PTP) and to study immunohistochemically the expression of △TC-PTP in human non-small c... This study objective was to express and characterize the catalytic domain of the human T cell protein tyrosine phosphatase(△TC-PTP) and to study immunohistochemically the expression of △TC-PTP in human non-small cell lung cancers. △TC-PTP gene was PCR amplified with the cDNA of human TC-PTP as template, and cloned into the pT7 expression vector. The recombinant pT7-△TC-PTP was expressed in E. coli Rosetta ( DE3 ) host cells and puri- fied. The enzymatic characteristics of △TC-PTP including enzyme activity and kinetics assay were measured. The antiserum was prepared by immunizing rabbit with the purified recombinant △TC-PTP. Rabbit polyclonal antibody against △TC-PTP was purified by PVDF immobilized antigen affinity chromatography. Immunohistochemical staining of lung cancer tissues was performed with antibody against △TC-PTP protein. △TC-PTP gene was correctly cloned, expressed, and purified. The recombinant △TC-PTP had a highly catalytic activity of PTPase. Squamous cell lung carcinoma showed a significantly higher expression rate of △TC-PTP (76. 92%, 10/13 ) than adenocarcinoma (57.14%, 4/7) and normal lung tissue(20%, 1/5 ). This study represents the first demonstration that △TC-PTP is highly expressed in human squamous cell lung carcinomas. In addition, this study provides an important basis for further studying the biological function of TC-PTP and its relationship with lung carcinomas and other diseases. 展开更多
关键词 T cell protein tyrosine phosphatase Catalytic domain CHARACTERIZATION Lung cancer
下载PDF
Purification and Characterization of Protein Tyrosine Phosphatase MEG1 and Preparation of Anti-PTPMEG1 Antibody
10
作者 ZHANG Xiao-ping XING Shu +3 位作者 Xiao-xia LIN Fan FU Xue-qi LI Wan-nan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第4期591-595,共5页
PTPMEGI is an intracellular protein tyrosine phosphatase(PTP), which contains FERM and PDZ domains This study focuses our attention on the expression, purification and characterization of catalytic domain of PTPMEG1... PTPMEGI is an intracellular protein tyrosine phosphatase(PTP), which contains FERM and PDZ domains This study focuses our attention on the expression, purification and characterization of catalytic domain of PTPMEG1 (AMEG1) and preparation of its polyclonal antibody. A cDNA fragment encoding AMEG1 protein(amino acid residues 643-926) was amplified by PCR and then cloned into the pT7-7 vector. Both soluble and insoluble recombinant AMEG1 proteins were observed after induction by IPTG. Soluble AMEG1 was purified via two chromatographic steps, and the purified enzyme was characterized. With para-nitrophenylphosphate(pNPP) as a substrate, AMEG1 exhibited typical enzymatic characteristics of classic PTPs and classical Michaelis-Menten kinetics. Insoluble AMEG1, which was mainly distributed in the inclusion body of E. coli cells extracts, was purified by preparative electrophoresis gel for the preparation of the polyclonal antibody. A rabbit was immunized with AMEG1 purified by preparative electrophoresis to generate anti-AMEG1 antibody. Anti-serum was collected on 28th day after initial injection and purified via affinity chromatography. The purified polyconal antibody displayed a satisfactory titer and sensitivity. 展开更多
关键词 protein tyrosine phosphatase(PTP) PTPMEG1 AMEG 1 Polyclonal antibody
下载PDF
POM analysis and computational interactions of 8-hydroxydiospyrin inside active site of protein tyrosine phosphatase 1B
11
作者 SAUD BAWAZER ASGHAR KHAN +9 位作者 ABDUR RAUF TAIBI B EN HADDA YAHYA SAL-AWTHAN OMAR BAHATTAB UMER RASHID INAMULLAH KHAN MUHAMMAD A SIF NAWAZ MD SAHAB UDDIN OLATUNDE AHMED MOHAMMAD A LI SHARIATI 《BIOCELL》 SCIE 2021年第3期751-759,共9页
Proteintyrosine phosphatase 1B(PTP1B)inhibitionis consideredas a potentialtherapeuticfor the treatmentof cancer,type2 diabetes,andobesity.Inour presentwork,weinvestigatedtheanti-diabeticpotentialof8-hydroxydiospyrin(8... Proteintyrosine phosphatase 1B(PTP1B)inhibitionis consideredas a potentialtherapeuticfor the treatmentof cancer,type2 diabetes,andobesity.Inour presentwork,weinvestigatedtheanti-diabeticpotentialof8-hydroxydiospyrin(8-HDN)from D.lotus against the PTP1B enzyme.It showed significant inhibitory activity of PTP1B with an IC 50 value of 18.37±0.02μM.A detailed molecular docking study was carried out to analyze the binding orientation,binding energy,and mechanism of inhibition.A comparative investigation of 8-HDN in the catalytic,as well as the allosteric site of PTP1B,was performed.Binding energy data showed that compound 8-HDN is more selective for the allosteric site and hence avoids the problems associated with catalytic site inhibition.The inhibition mechanism of 8-HDN can be further investigated as an active lead compound against PTP1B by using in vitro and in vivo models. 展开更多
关键词 Diospyros lotus ROOTS 8-Hydroxydiospyrin Molecular docking protein tyrosine phosphatase 1B
下载PDF
Cloning and Expression of Intracellular Part of Receptor Protein Tyrosine Phosphatase RPTPα and Preparation of Its Polyclonal Antibodies
12
作者 CHEN Yang YANG Su-juan +3 位作者 FU Yao WANG Jia-peng ZHAO Zhi-zhuang FU Xue-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第3期344-347,共4页
A DNA fragment encoding the intracellular part of tyrosine phosphatase RPTPα designated as RPTPα-2D gene was amplified by PCR from a human prostate cDNA library and cloned into the pT7 E. coli expression vector. The... A DNA fragment encoding the intracellular part of tyrosine phosphatase RPTPα designated as RPTPα-2D gene was amplified by PCR from a human prostate cDNA library and cloned into the pT7 E. coli expression vector. The resulting plasmid pT7-RPTPα-2D was used to transform Rosetta DE3 E. coli cells. RPTPα-2D was predominately expressed in the insoluble inclusion body and was effectively purified using preparative electrophoresis gels. Polyclonal antibodies were obtained after immunization of a rabbit with purified RPTPα-2D. The antibodies displayed a high titer and sensitivity. This study thus provided a valuable tool for further researches on RPTPα. 展开更多
关键词 Receptor-like protein tyrosine phosphatase CLONE Polyclonal antibodies
下载PDF
Expression of Catalytic Domain of Protein Tyrosine Phosphatase 1B and Preparation of Its Polyclonal Antibody
13
作者 SHI Dong-lei DONG Hong-bo +5 位作者 ZHU Zhi-cheng SUN Mei SU Ji-quan ZHANG Xing-yi XU Yue-chi FU Xue-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第2期204-207,共4页
This study focuses on the expression of human protein tyrosine phosphatase 1B (PTP1 B) catalytic domain (△PTP1B) and preparation of polyclonal antibody against △PTP1B. △PTP1B gene was PCR amplified with the cDN... This study focuses on the expression of human protein tyrosine phosphatase 1B (PTP1 B) catalytic domain (△PTP1B) and preparation of polyclonal antibody against △PTP1B. △PTP1B gene was PCR amplified with the cDNA of human PTP1B as the template, and cloned into the pT7 expression vector. The recombinant pT7-△PTP1B was expressed in E. eoli Rosetta( DE3 ) host cells and purified. The antiserum was prepared by immunizing rabhit with purified recombinant △PTP1B. The polyclonal antibody against △PTP1B was purified by PVDF immobilized antigen affinity chromatography. △PTP1B was correctly cloned, expressed, and purified as confirmed by PCR, DNA sequence analysis, SDS-PAGE western blotting, and ILPLC. The titer and sensitivity of the antibody were 1:2500( volume ratio) and 0. 1 ng, respectively. This study provides an important basis for further studying the biological function of PTP1B and its relationship with human diseases. 展开更多
关键词 protein tyrosine phosphatase IB Catalytic domain Polyclonal antibody
下载PDF
Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) Activity by the Aqueous Partition of Guava Leaf Extract
14
作者 Wan-Jung Wu Wei-Li Yan +11 位作者 Shiou-Cherng Yu Gerry Gunawan Chien-Yih Lin Chih-Yan Huang Chia-Ting Chang Haw-Wen Chen Chong-Kuei Lii Alice L. Yu Ching-Chu Chen Yu-Ting Chung Jeng-Dau Tsai Henry J. Tsai 《Journal of Pharmacy and Pharmacology》 2018年第10期890-906,共17页
Guava leaf tea has been used as a folk medicine for treating hyperglycemic conditions in Asia and Africa. The hypoglycemic efficacy of guava leaf has been documented by many scientists in these regions, but the hypogl... Guava leaf tea has been used as a folk medicine for treating hyperglycemic conditions in Asia and Africa. The hypoglycemic efficacy of guava leaf has been documented by many scientists in these regions, but the hypoglycemic mechanism is poorly understood. Guava leaves were extracted with methanol and the crude extract was partitioned against hexane, ethyl acetate, and butanol in sequence. The leftover in water is defined as the aqueous partition. A second smaller batch was extracted with hot water directly. Oral glucose tolerance test was carried out on healthy mice instead of diabetic mice that lack endogenous insulin. Glucose uptake was examined with 3T3-L1 adipocytes. Oxidative effect on PTP1B (protein tyrosine phosphatase 1b) was carried out with real-time PTP1B enzymatic assay. The aqueous partition of guava leaf extract possesses a potent inhibitory effect on PTP1B enzymatic activity and this PTP1B inhibition is through a slow oxidative but reversible inactivation on the enzyme. The reversible inactivation would suggest guava leaf extract may augment PTP1B inhibition alongside the endogenous H2O2 which itself is induced by insulin. In addition, our study confirmed the hypoglycemic efficacy being associated with guava leaf and found the most effective molecules reside in the aqueous partition which is also less cytotoxic to Chinese hamster ovary cells when compared to other less polar partitions. The guava leaf extract can modulate insulin activity through a redox regulation on PP1B enzymatic activity. It is speculated that a compound similar to gallocatechin in the aqueous partition can reduce an oxygen molecule to hydrogen peroxide which in turn oxidizes the catalytic residue Cys in PTP1B. Therefore, the guava leaf tea can serve as a functional hypoglycemic drink that is suitable for either healthy or diabetic subjects. 展开更多
关键词 Guava leaf extract HYPOGLYCEMIC OXIDATIVE protein tyrosine phosphatase 1b slow inactivation.
下载PDF
Mechanism of Protein Tyrosine Phosphatase O Receptor in Hepatocellular Carcinoma
15
作者 Ye Qin Xinke Xie 《Proceedings of Anticancer Research》 2021年第2期12-14,共3页
Pathologist Virchow has proposed a hypothesis that the origin of tumors comes from chronic inflammation.Clinically,liver tumors can be divided into three types Hepatocellular carcinoma(HCC)is the most common type,whic... Pathologist Virchow has proposed a hypothesis that the origin of tumors comes from chronic inflammation.Clinically,liver tumors can be divided into three types Hepatocellular carcinoma(HCC)is the most common type,which is closely related to various kinds of inflammation.Studies have shown that protein tyrosine phosphatase receptor type O(PTPRO)is a new type of protein tyrosine phosphatase,which is negatively correlated with tumorigenesis.As a new tumor suppressor protein,PTPRO is of great significance for the diagnosis and treatment of HCC in the future.This paper aims to discuss the mechanism of PTPRO in HCC. 展开更多
关键词 protein tyrosine phosphatase type O receptor Hepatocellular carcinoma MECHANISM
下载PDF
Research Progress of Protein Tyrosine Phosphatase Receptor-Type 0 in Hepatocellular Carcinoma
16
作者 Xiangzhe Yang Ye Qin Xinke Xie 《Proceedings of Anticancer Research》 2021年第6期94-97,共4页
Hepatocellular carcinoma(HCC)is one of the most common malignant tumors in the world with a high incidence and has become one of the most malignant cancers worldwide.Its clinical treatment mainly includes surgical int... Hepatocellular carcinoma(HCC)is one of the most common malignant tumors in the world with a high incidence and has become one of the most malignant cancers worldwide.Its clinical treatment mainly includes surgical intervention,chemotherapy,and iirununotherapy,with poor curative effect and prognosis.In recent years,with the development of basic research,it has been revealed that protein tyrosine phosphatase receptor-type O(PTPRO)plays an important role in the pathogenesis of hepatocellular carcinoma.Protein tyrosine phosphatase receptor-type O is a new type of protein tyrosine phosphatase,which has been proven to inhibit oncoprotein.In this paper,the potential mechanism of protein tyrosine phosphatase receptor-type O in the progression of hepatocellular carcinoma is discussed to provide reference for clinical treatment and drug development. 展开更多
关键词 protein tyrosine phosphatase receptor-type O Hepatocellular carcinoma Research progress
下载PDF
Protein tyrosine phosphatases:emerging role in cancer therapy resistance
17
作者 Min Zhao Wen Shuai +4 位作者 Zehao Su Ping Xu Aoxue Wang Qiu Sun Guan Wang 《Cancer Communications》 SCIE 2024年第6期637-653,共17页
Background:Tyrosine phosphorylation of intracellular proteins is a posttranslational modification that plays a regulatory role in signal transduction during cellular events.Dephosphorylation of signal transduction pro... Background:Tyrosine phosphorylation of intracellular proteins is a posttranslational modification that plays a regulatory role in signal transduction during cellular events.Dephosphorylation of signal transduction proteins caused by protein tyrosine phosphatases(PTPs)contributed their role as a convergent node to mediate cross-talk between signaling pathways.In the context of cancer,PTP-mediated pathways have been identified as signaling hubs that enabled cancer cells to mitigate stress induced by clinical therapy.This is achieved by the promotion of constitutive activation of growth-stimulatory signaling pathways or modulation of the immune-suppressive tumor microenvironment.Preclinical evidences suggested that anticancer drugs will release their greatest therapeutic potency when combined with PTP inhibitors,reversing drug resistance that was responsible for clinical failures during cancer therapy.Areas covered:This review aimed to elaborate recent insights that supported the involvement of PTP-mediated pathways in the development of resistance to targeted therapy and immune-checkpoint therapy.Expert opinion:This review proposed the notion of PTP inhibition in anticancer combination therapy as a potential strategy in clinic to achieve long-term tumor regression.Ongoing clinical trials are currently underway to assess the safety and efficacy of combination therapy in advanced-stage tumors. 展开更多
关键词 cancer treatment combination therapy drug resistance protein tyrosine phosphatase
原文传递
Inhibiting SHP2 reduces glycolysis, promotes microglial M1 polarization, and alleviates secondary inflammation following spinal cord injury in a mouse model
18
作者 Xintian Ding Chun Chen +6 位作者 Heng Zhao Bin Dai Lei Ye Tao Song Shuai Huang Jia Wang Tao You 《Neural Regeneration Research》 SCIE CAS 2025年第3期858-872,共15页
Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PT... Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury. 展开更多
关键词 apoptosis GLYCOLYSIS inflammatory response MICROGLIA neurons POLARIZATION spinal cord injury Src homology 2-containing protein tyrosine phosphatase 2
下载PDF
Pachymic acid exerts antitumor activities by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B
19
作者 Hao Zhang Kun Zhu +5 位作者 Xue-Feng Zhang Yi-Hui Ding Bing Zhu Wen Meng Qing-Song Ding Fan Zhang 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第4期170-180,共11页
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor... Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B. 展开更多
关键词 Pachymic acid Lung adenocarcinoma protein tyrosine phosphatase 1B Wnt/β-catenin signaling pathway METASTASIS ANGIOGENESIS AUTOPHAGY
下载PDF
Bioactive chemical constituents from the marine-derived fungus Cladosporium sp.DLT-5
20
作者 Luting DAI Qingyi XIE +6 位作者 Jiaocen GUO Qingyun MA Li YANG Jingzhe YUAN Haofu DAI Zhifang YU Youxing ZHAO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期905-914,共10页
A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidat... A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidation determined the planar structure of 1.Subsequent electronic circular dichroism(ECD)experiment assigned the absolute configuration of 1.Compounds 1,2,4–6,and 10 displayed different degrees of neuroprotective activities on human neuroblastoma cells SH-SY5Y.Five compounds(1,3–5,and 13)emerged resistance to protein tyrosine phosphatase 1B(PTP1B),further kinetic analysis and molecular docking study indicated that the most potent compound 13(IC50value of 10.74±0.61μmol/L)was found as a noncompetitive inhibitor for PTP1B.Surface plasmon resonance(SPR)and molecular docking studies also demonstrated the interaction between compound 12 and Niemann-Pick C1 Like 1(NPC1L1),which has been identified as significant therapeutic target for hypercholesteremia.In addition,compounds 3,6,and 14 showed attractive inhibitory activity against the phytopathogenic fungi:Colletotrichum capsici.Therefore,library of Cladosporium metabolites is enriched and new active uses of known compounds are explored. 展开更多
关键词 Cladosporium sp. marine-derived fungus neuroprotective effects protein tyrosine phosphatase 1B(PTP1B) Niemann-Pick C1 Like 1(NPC1L1) antifungal activity
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部