The conformational properties and elastic behaviors of protein-like single chains in the process of tensileelongation were investigated by means of Monte Carlo method.The sequences of protein-like single chains contai...The conformational properties and elastic behaviors of protein-like single chains in the process of tensileelongation were investigated by means of Monte Carlo method.The sequences of protein-like single chains contain two typesof residues:hydrophobic(H)and hydrophilic(P).The average conformations and thermodynamics statistical properties ofprotein-like single chains with various elongation ratio λ were calculated.It was found that the mean-square end-to-enddistance<R^2>(?).increases with elongation ratio λ.The tensor eigenvalues ratio of<L_2~2>:<L_1~2>decreases with elongationratio λ for short(HP)_x protein-like polymers,however,the ratio of<L_3~2>:<L_1~2>increases with elongation ratio λ,especially for long (H)_x sequence.Average energy per bond increases with elongation ratio λ,especially for (H)_xprotein-like single chains.Helmholtz free energy per bond also increases with elongation ratio λ.Elastic force(f),energycontribution to force(f_U)and entropy contribution to force(fs)for different protein-like single chains were also calculated.These investigations may provide some insights into elastic behaviors of proteins.展开更多
Elastic behaviors of protein-like chains are investigated by Pruned-Enriched-Rosenbluth method and modified orientation-dependent monomer-monomer interactions model. The protein-like chain is pulled away from the attr...Elastic behaviors of protein-like chains are investigated by Pruned-Enriched-Rosenbluth method and modified orientation-dependent monomer-monomer interactions model. The protein-like chain is pulled away from the attractive surface slowly with elastic force acting on it. Strong adsorption interaction and no adsorption interaction are both considered. We calculate the characteristic ratio and shape factor of protein-like chains in the process of elongation. The conformation change of the protein-like chain is well depicted. The shape of chain changes from “rod” to “sphere” at the beginning of elongation. Then, the shape changes from “sphere” to “rod”. In the end, the shape becomes a “sphere” as the chain leaves away from the surface. In the meantime, we discuss average Helmoholtz free energy per bond, average energy per bond, average adsorbed energy per bond, average α-helical energy per bond, average β-sheet energy per bond and average contact energy per bond. On the other hand, elastic force is also studied. It is found that elastic force has a long plateau during the tensile elongation when there exists adsorption interaction. This result is consistent with SMFS experiment of general polymers. Energy contribution to elastic force and contact energy contribution to elastic force are both discussed. These investigations can provide some insights into the elastic behaviors of adsorbed protein chains.展开更多
The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured a...The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.展开更多
The simulation is carried out by employing the method of molecular dynamics with the single chain of konjac glucomannan (KGM) in vacuum as the structural model to discuss the factors that affect the single chain str...The simulation is carried out by employing the method of molecular dynamics with the single chain of konjac glucomannan (KGM) in vacuum as the structural model to discuss the factors that affect the single chain structure, the dynamic structure of the chain and the acting forces that maintain the chain structure. The results show that the shape and stability of the chain are affected by the degree of polymerization. As for the KGM with high degree of polymerization, its chain presents random coiling state and its stability declines. Both before and after deacetylation in the process of dynamic motion, the chain of KGM presents random coiling state with periodic variation of extension and coil and demonstrates favorable flexibility, indicating acetyl is not the main factor that affects the shape of chain, whereas dihedral angle and static actions are respectively the key bonding and nonbonding acting forces that influence the single chain conformations in vacuum.展开更多
AIM: To construct fusion protein of a single-chain antibody (scFv) against transferrin receptor (TfR) with alkaline phosphatase(AP). METHODS: The VH-linker-VL,namely scFv gene,was prepared by amplifying the VH and VL ...AIM: To construct fusion protein of a single-chain antibody (scFv) against transferrin receptor (TfR) with alkaline phosphatase(AP). METHODS: The VH-linker-VL,namely scFv gene,was prepared by amplifying the VH and VL genes from plasmid pGEM-T-VH and pGEM-T-VL with splicing overlap extension polymerase chain reaction (SOE PCR). After the ScFv gene was modified by 5/71 and Not I,it was subcloned into the secretory expression vector pUC19/119, and then was transformed into E.coli TG1.The positive colonies were screened by colony PCR and their expressions were induced by IPTG.ScFv gene was gained by digesting ScFv expression vector pUC19/119 with 5/71 and NotI restriction enzymes, then subcloned into expression vector pDAP2, followed by transformation in E.coli TG1.The positive colonies were selected by bacterial colony PCR.The expression of fusion protein (scFv-AP) was induced by IPTG.Its activity was detected by enzyme immunoassay. The molecular weights of scFv and scFv-AP were measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS: The product of SOE PCR formed a band of 700 bp in agarose gel electrophoresis. SDS-PAGE demonstrated the molecular weight of scFv was 27 ku.Immunofluorescent assay (IFA) demonstrated its reactivity with TfR.The molecular weight of scFv-AP was 75 ku.Enzyme immunoassay showed that scFv-AP could specifically bind to human TfR and play AP activity. CONCLUSION: We have successfully prepared the anti-human TfR scFv and constructed the fusion protein of scFv and AP.It is promising for immunological experiments.展开更多
Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(me...Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.展开更多
African swine fever virus(ASFV)is a lethal pathogen that causes severe threats to the global swine industry and it has already had catastrophic socio-economic effects.To date,no licensed prophylactic vaccine exists.Li...African swine fever virus(ASFV)is a lethal pathogen that causes severe threats to the global swine industry and it has already had catastrophic socio-economic effects.To date,no licensed prophylactic vaccine exists.Limited knowledge exists about the major immunogens of ASFV and the epitope mapping of the key antigens.As such,there is a considerable requirement to understand the functional monoclonal antibodies(mAbs)and the epitope mapping may be of utmost importance in our understanding of immune responses and designing improved vaccines,therapeutics,and diagnostics.In this study,we generated an ASFV antibody phage-display library from ASFV convalescent swine PBMCs,further screened a specific ASFV major capsid protein(p72)single-chain antibody and fused with an IgG Fc fragment(scFv-83-Fc),which is a specific recognition antibody against ASFV Pig/HLJ/2018 strain.Using the scFv-83-Fc mAb,we selected a conserved epitope peptide(221MTGYKH226)of p72 retrieved from a phage-displayed random peptide library.Moreover,flow cytometry and cell uptake experiments demonstrated that the epitope peptide can significantly promote BMDCs maturation in vitro and could be effectively uptaken by DCs,which indicated its potential application in vaccine and diagnostic reagent development.Overall,this study provided a valuable platform for identifying targets for ASFV vaccine development,as well as to facilitate the optimization design of subunit vaccine and diagnostic reagents.展开更多
Multiple sequence alignments can be used in the template-based modelling of protein structures to build fragment-based assembly models. Therefore, useful functional information on the 3D structure of the anti-MCF-7 sc...Multiple sequence alignments can be used in the template-based modelling of protein structures to build fragment-based assembly models. Therefore, useful functional information on the 3D structure of the anti-MCF-7 scFv protein can be obtained using available bioinformatics tools. This paper utilises several commonly-used bioinformatics tools and databases, including BLAST (Basic Local Alignment Search Tool), GenBank, PDB (Protein Data Bank), KABAT numbering and SWISS-MODEL, to gain specific functional insights into the anti-MCF-7 scFv protein and the assembly of single-chain fragment variable (scFv) antibodies, which consist of a variable heavy chain (VH) and a variable light chain (VL) connected by the linker (Gly4-Ser)3. The linker has been built as a loop structure using the Insight II software. The accuracy of the loop structure has been evaluated using Root Mean Square Deviation (RMSD). The accuracies of the VL and VH template-based structures are enhanced by using the evaluation methods Verify3D, ERRAT and Ramchandran plotting, which measure the error in the residues. In the results, 100% of the light-chain residues scored above 0.2, whereas 88.5% of the heavy-chain residues’ scored above 0.15 in the Verify3D evaluation method. Meanwhile, using ERRAT, the alignments of both chains scored more than 70% in space. Additionally, the Ramchandran plot evaluation method showed large numbers of residues in the favoured areas in both chains;these findings demonstrated that all of the chosen templates were the best candidates.展开更多
Reactive oxygen species(ROS) plays a key role in human heart diseases. Glutathione peroxidase(GPX) functions as an antioxidant as it catalyzes the reduction of hydroperoxide. In order to investigate the antioxidan...Reactive oxygen species(ROS) plays a key role in human heart diseases. Glutathione peroxidase(GPX) functions as an antioxidant as it catalyzes the reduction of hydroperoxide. In order to investigate the antioxidant effect of human selenium-containing single-chain Fv(Se-scFv-B3), a new mimic of GPX, a model system of hydrogen peroxide(H202)-induced rat cardiac myocyte damage was established. The cardiac myocyte damage was characte- rized in terms of cell viability, lipid peroxidation, cell membrane integrity, and intracellular H202 level. The Se-scFv-B3 significantly reduced H2O2-induced cell damage as shown by the increase of cell viability, the decline of malondialdehyde(MDA) production, lactate dehydrogenase(LDH) release, and intracellular H2O2 level. So Se-scFv-B3 may have a great potential in the treatment of human heart diseases induced by ROS.展开更多
BACKGROUND: Phage display technology has become a vital tool in studies aimed at identifying molecules binding to a specific target. It enables the rapid generation and selection of high affinity, fully human antibody...BACKGROUND: Phage display technology has become a vital tool in studies aimed at identifying molecules binding to a specific target. It enables the rapid generation and selection of high affinity, fully human antibody product candidates to essentially any disease target appropriate for antibody therapy. In this study, we prepared the recombinant single-chain fragment variable ( ScFv) antibody to hepatitis B virus surface antigen (HBsAg) by the phage display technology for obtaining a virus-targeting mediator. METHODS: mRNA was isolated from B-lymphocytes from a healthy volunteer and converted into cDNA. The fragment variables of heavy and light chain were amplified separately and assembled into ScFv DNA with a specially constructed DNA linker by polymerase chain reaction. The ScFv DNA was ligated into the phagmid vector pCANT-AB5E and the ligated sample was transformed into competent E. coli TG1. The transformed cells were infected with M13K07 helper phage to form a human recombinant phage antibody library. The volume and recombinant rate of the library were evaluated by bacterial colony count and restriction analysis. After two rounds of panning with HBsAg. the phage clones displaying ScFv of the antibody were selected by enzyme-linked immunosorbant assay ( ELISA) from the enriched phage clones. The antigen binding affinity of the positive clone was detected by competition ELISA. HB2151 E. coli was transfected with the positive phage clone demonstrated by competition ELISA for production of a soluble form of the anti-HBsAg ScFv. ELISA assay was used to detect the antigen binding affinity of the soluble anti-HBsAg ScFv. Finally, the relative molecular mass of soluble anti-HBsAg ScFv was measured by SDS-PAGE. RESULTS: The variable heavy ( VH ) and variable light (VL) and ScFv DNAs were about 340bp, 320bp and 750bp, respectively. The volume of the library was up to 2 × 106 and 8 of 10 random clones were recombinants. Two phage clones could strongly compete with the original HBsAb for binding to HBsAg. Within 2 strong positive phage clones, the soluble anti-HBsAg ScFv from one clone was found to have the binding activity with HBsAg. SDS-PAGE showed that the relative molecular weight of soluble anti-HBsAg ScFv was 32 kDa. CONCLUSION: The anti-HBsAg ScFv successfully produced by phage antibody technology may be useful for broadening the scope of application of the antibody.展开更多
The development of single-chain Fv antibody (scFv) by recombinant gene expression is an important milestone for cancer therapy. Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good pen...The development of single-chain Fv antibody (scFv) by recombinant gene expression is an important milestone for cancer therapy. Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good penetration into tumor tissue and to improve their pharmacokinetics in vivo, offering a clinically valuable application. The relationship needs to be analyzed that there may be some variations between the structure and function of the fusion proteins, and the relationship between the structure and function of protein molecules was obtained through analyzing relevant literature at home and abroad as well as modeling analysis. Through our analysis of the interaction region between antibody and antigen, and of the binding sites for molecular conformation, it is clear that existing antibodies need to be modified at the DNA sequence level, enhancing the biological activity of the antibodies. Based on the view that bio-molecular computer models are closely integrated with biological experiments, a bio-molecular structure-activity relationship model can be established in terms of molecular conformation, physical and chemical properties and the biological activity of single-chain antibodies. Two enlightenments are obtained from our analysis. On one hand, the structure-activity relationship is clear for new immune molecules at the gene expression level. On the other hand, a single-chain antibody molecule can be designed and optimized for the cancer-oriented treatment. In this article, we provided the theoretical and experimental basis for the development of single-chain antibodies appropriate for retinoblastoma therapy.展开更多
Summary: A three-dimensional (3D) graphic model of a single-chain Fv (scFv) which was derived from an anti-human placental acidic isoferritin (PAF) monoclonal antibody (MAb) was construct- ed by a homologous protein...Summary: A three-dimensional (3D) graphic model of a single-chain Fv (scFv) which was derived from an anti-human placental acidic isoferritin (PAF) monoclonal antibody (MAb) was construct- ed by a homologous protein-predicting computer algorithm on Silicon graphic computer station. The structure, surface static electricity and hydrophobicity of scFv were investigated. Computer graphic modelling indicated that all regions of scFv including the linker, variable regions of the heavy (VH) and light (VL) chains were suitable. The VH region and the VL region were involved in composing the 'hydrophobic pocket'. The linker was drifted away VH and VL regions. The complementarity determining regions (CDRs) of VH and VL regions surrounded the 'hydrophobic pocket'. This study provides a theory basis for improving antibody affinity, investigating antibody structure and analyzing the functions of VH and VL regions in antibody activity.展开更多
The effect of sintering dispersed and bulk,low molecular weight(M_n=50,000 Da),nano-emulsionpolytetrafluoroethylene(PTFE)particles near their melting point is described.With the nascent particles consisting of ca.75 n...The effect of sintering dispersed and bulk,low molecular weight(M_n=50,000 Da),nano-emulsionpolytetrafluoroethylene(PTFE)particles near their melting point is described.With the nascent particles consisting of ca.75 nm diameter,hexagonal,single crystals,sintering at,e.g.,350℃,results,initially,in merger of neighboring particles,followed by individual molecular motion on the substrate and the formation of folded chain,lamellar single crystals andspherulites,and on-edge ribbons.It is suggested these structures develop,with time,in the mesomorphic“melt”.Sintering ofthe bulk resin yields extended chain,band structures,as well as folded chain lamellae;end-surface to end-surface merger,possibly by end-to-end polymerization,occurs with increasing time.展开更多
objective: To construct the bone morphogenetic protein (BMP) single chain Fv (scFv) and obtain its expression. Methods: Using a synthesized peptide linker containing 15 amino acids, the N end of the heavy chain gene f...objective: To construct the bone morphogenetic protein (BMP) single chain Fv (scFv) and obtain its expression. Methods: Using a synthesized peptide linker containing 15 amino acids, the N end of the heavy chain gene fragment of a strain of murine anti-BMP McAb was connected with the C end of its light chain gene fragment with subcloning. Then the recombinant BMPscFv was cloned into pGEX-4T-1 plasmid and in duced to express in E. coli JM 109. Results: The full length of the recombinant BMPscFv gene was 705 bp and its fusion protein was about 52 kD. Conclusion: Subcloning is a rapid, simple and reliable method for construction of scFv.展开更多
Objective The binding of cell adhesive peptides(such as RGD)to integrins initiates the recruitment of cytoplasmic adaptor proteins(e.g.,vinculin)and the formation of focal adhesion(FA)complexes required for cell adhes...Objective The binding of cell adhesive peptides(such as RGD)to integrins initiates the recruitment of cytoplasmic adaptor proteins(e.g.,vinculin)and the formation of focal adhesion(FA)complexes required for cell adhesion.The ability to manipulate this ligand-mediated cell adhesion process is crucial for regulating cell migration,cell differentiation,injury healing,and immune response.Some recent studies reported the importance of the tether length/mobility of the cell adhesive ligands in regulating the traction force development of cells.In the native cellular microenvironment,such a dynamic change in the nanoscale tether length of bioactive ligands is often mediated by conformational changes of the structural proteins due to protein folding or degradation.However,no prior studies have demonstrated the modulation of the ligand tether mobility by controlling the intramolecular folding of polymeric linkers.Unfoldable synthetic macromolecules with easy synthetic routes and controllable structures,such as supramolecular host-guest single chain nanogels(SCNGs),are ideal candidates for mimicking the changes in the tether mobility of bioactive ligands via biorthogonal triggers.Methods S,S’-bis(a’a’-dimethyl-a’’-propargyl acetate)trithiocarbonate was first used to mediate the RAFT polymerization of N,N-dimethyl acrylamide,vinyl-adamantane and vinyl-β-cyclodextrin to yield the ADA@CD-SCNGs.The preparation of the unfoldable host-guest SCNGs was evidenced by the by gel permeation chromatography,proton nuclear magnetic resonance spectroscopy,atomic force microscopy and dynamic light scattering.Then the RGD peptide was conjugated to the alkynyl group on one end of the SCNGs before immobilizing the material on the substrate,which was confirmed by scanning electron microscopy(SEM).The regulation of cell behaviours by unfolding of the SCNG-RGD was confirmed by immunofluorescence staining of vinculin and Yes-associated protein(YAP).Results The preparation of ADA@CD-SCNGs was confirmed by GPC which showed a unimodal molecular weight distribution.DLS and AFM data also proved that the SCNGs had an average diameter of 12±3nm.SEM images showed that SCNGs were conjugated as a linker of RGD peptide to thiolated glass substrate at an average density of 162±11 particles/μm2.These particles disappeared after adding free competitive ADA guest molecules,indicating the triggered unfolding of the tether SCNGs.In addition,the unfolding of supramolecular ADA@CD-SCNGs was also evidenced by a decrease in the GPC elution time and a slight increase in the apparent molecular weight.These results show that the immobilized ADA@CD-SCNGs can be unfolded to tune the tether length and mobility of the conjugated RGD ligands.Then we investigated the regulation of the cell behaviors on the substrate by triggering the unfolding of SCNG linkers.A critical level of traction force is required to effectively initiate and maintain integrin-mediated formation of FA complexes and subsequent mechano-transduction signaling.An increased tether length in cell-adhesive ligands can lead to a diminished cell traction force as if cells are adhering to soft substrates.Here,the unfolding of the ADA@CD-SCNG-RGD triggered by the addition of free ADA led to disassembly of the mature focal adhesions in the cells as evidenced by the reduced vinculin and F-actin in staining.Subsequently,nuclear YAP also decreased significantly because of the impaired mechano-sensing and diminished cell cytoskeleton tension.In addition,the extensively spread cells gradually became round after the medium was supplemented with free competitive ADA to unfold the SCNG linker.These finding demonstrates that the substrates with the unfolded ADA@CD-SCNG-RGD only supported weak cell adhesions.In contrast,on the substrate conjugated with the nonunfoldable MBA-SCNG-RGD linker,the addition of free ADA resulted in no change in the spread cell morphology and protein expressions.These results indicate that the unfoldable host-guest ADA@CD-SCNG can be used to manipulate the nanoscale presentation of ligands to regulate cell behaviors.Conclusions We demonstrate the application of SCNGs as the supramolecular linker to tune the nanoscale ligand tether length.These findings demonstrate that the strategy of manipulating the tether mobility of bioactive ligands by using supramolecular SCNGs as linkers provides a highly tunable,biomimetic,and bio-orthogonal approach to study the dynamic events of cell adhesion.展开更多
We study the translocation of a protein-like chain through a finite cylindrical channel using the pruned-enriched Rosenbluth method (PERM) and the modified orientation-dependent monomer-monomer interaction (ODI) m...We study the translocation of a protein-like chain through a finite cylindrical channel using the pruned-enriched Rosenbluth method (PERM) and the modified orientation-dependent monomer-monomer interaction (ODI) model. Attractive channels (εcp = -2.0, -1.0, -0.5), repulsive chanaels (εcp: 0.5, 1.0, 2.0), and a neutral channel (εcp =- 0) are discussed. The results of the chain dimension and the energy show that Z0 : 1.0 is an important case to distinguish the types of the channels. For the strong attractive channel, more contacts form during the process of translocation. It is also found that an external force is needed to drive the chain outside of the channel with the strong attraction. While for the neutral, the repulsive, and the weak attractive channels, the translocation is spontaneous.展开更多
In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human an...In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.展开更多
We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies,...We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.展开更多
In this review, single-chain fragment variable construction using phage-display technology as a promising anticancer immunotherapy technology is described. Cloning and the specific bio-panning selection with phage dis...In this review, single-chain fragment variable construction using phage-display technology as a promising anticancer immunotherapy technology is described. Cloning and the specific bio-panning selection with phage display technology, as well as the use of the epidermal growth factor receptor (EGFR) at the surface of MCF-7 cells as the antigen for the straightforward specific selection of single chain Fvs, are discussed. Moreover, phage display technologies and their application are important for vaccine production and immunotherapy against viruses and cancers. Furthermore, expression of the gene will cause the production and expression of the protein in prokaryotic and eukaryotic cells, which can be used to detect anti-cancer single chain fragment variables (scFvs). Finally, homology modelling is described to show the three-dimensional scFv structure that verifies the Complementary-Determining-Regions (CDRs) on the surface of the model.展开更多
Intracranial delivery of human Fc-deleted antibody specific to amyloid-β peptide (Aβ, anti-Aβ single-chain Fv, scFv) via adeno-associated virus (AAV) inhibits amyloid deposition in transgenic mice. However, the...Intracranial delivery of human Fc-deleted antibody specific to amyloid-β peptide (Aβ, anti-Aβ single-chain Fv, scFv) via adeno-associated virus (AAV) inhibits amyloid deposition in transgenic mice. However, the effects of AAV-mediated Fc-deleted antibody on animal behavior remain unclear. In this study, the anti-Aβ scFv antibody gone, isolated from phage display, was fused to the 5' end of the scFv antibody gone for antibody secretion by 2 rounds of polymerase chain reaction amplification. The fused antibody cDNA was cloned into a pSNAV2 plasmid under the control of the cytomegalovirus promoter. The sequence verified expression vector pSNAV2/scFv was transferred to BHK-21 ceils, and stable transfected BHK-21/scFv cells were established by G418 selection and infected with the recombinant herpes simplex virus rHSV/repcap for AAV production. Recombinant AAV was injected into the left quadriceps femoris of PDAPP transgenic mice. After 3 months, Morris water-maze results confirmed significantly improved cognitive function in a mouse model of Alzheimer's disease. Key Words: Alzheimer's disease; adeno-associated virus; amyloid-β peptide; single-chain antibody; neurodegenerative diseases; neural regeneration展开更多
基金The research was financially supported by the National Natural Science Foundation of China(Nos.20174036,20274040)the Natural Science Foundation of Zhejiang Province(No.R404047).
文摘The conformational properties and elastic behaviors of protein-like single chains in the process of tensileelongation were investigated by means of Monte Carlo method.The sequences of protein-like single chains contain two typesof residues:hydrophobic(H)and hydrophilic(P).The average conformations and thermodynamics statistical properties ofprotein-like single chains with various elongation ratio λ were calculated.It was found that the mean-square end-to-enddistance<R^2>(?).increases with elongation ratio λ.The tensor eigenvalues ratio of<L_2~2>:<L_1~2>decreases with elongationratio λ for short(HP)_x protein-like polymers,however,the ratio of<L_3~2>:<L_1~2>increases with elongation ratio λ,especially for long (H)_x sequence.Average energy per bond increases with elongation ratio λ,especially for (H)_xprotein-like single chains.Helmholtz free energy per bond also increases with elongation ratio λ.Elastic force(f),energycontribution to force(f_U)and entropy contribution to force(fs)for different protein-like single chains were also calculated.These investigations may provide some insights into elastic behaviors of proteins.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20904047).
文摘Elastic behaviors of protein-like chains are investigated by Pruned-Enriched-Rosenbluth method and modified orientation-dependent monomer-monomer interactions model. The protein-like chain is pulled away from the attractive surface slowly with elastic force acting on it. Strong adsorption interaction and no adsorption interaction are both considered. We calculate the characteristic ratio and shape factor of protein-like chains in the process of elongation. The conformation change of the protein-like chain is well depicted. The shape of chain changes from “rod” to “sphere” at the beginning of elongation. Then, the shape changes from “sphere” to “rod”. In the end, the shape becomes a “sphere” as the chain leaves away from the surface. In the meantime, we discuss average Helmoholtz free energy per bond, average energy per bond, average adsorbed energy per bond, average α-helical energy per bond, average β-sheet energy per bond and average contact energy per bond. On the other hand, elastic force is also studied. It is found that elastic force has a long plateau during the tensile elongation when there exists adsorption interaction. This result is consistent with SMFS experiment of general polymers. Energy contribution to elastic force and contact energy contribution to elastic force are both discussed. These investigations can provide some insights into the elastic behaviors of adsorbed protein chains.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019,12105339,and62174180)the Opening Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,China(Grant No.SKLIPR2113)。
文摘The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.
基金This work was supported by the National Natural Science Foundation of China (30371009), Science Foundation of Fujian Department of Education (JA03059) and Key Project of Science and Technology of Fujian Province (2003Y008)
文摘The simulation is carried out by employing the method of molecular dynamics with the single chain of konjac glucomannan (KGM) in vacuum as the structural model to discuss the factors that affect the single chain structure, the dynamic structure of the chain and the acting forces that maintain the chain structure. The results show that the shape and stability of the chain are affected by the degree of polymerization. As for the KGM with high degree of polymerization, its chain presents random coiling state and its stability declines. Both before and after deacetylation in the process of dynamic motion, the chain of KGM presents random coiling state with periodic variation of extension and coil and demonstrates favorable flexibility, indicating acetyl is not the main factor that affects the shape of chain, whereas dihedral angle and static actions are respectively the key bonding and nonbonding acting forces that influence the single chain conformations in vacuum.
基金Supported by Natural Key and Basic Research Development Program,No.2002CB513109
文摘AIM: To construct fusion protein of a single-chain antibody (scFv) against transferrin receptor (TfR) with alkaline phosphatase(AP). METHODS: The VH-linker-VL,namely scFv gene,was prepared by amplifying the VH and VL genes from plasmid pGEM-T-VH and pGEM-T-VL with splicing overlap extension polymerase chain reaction (SOE PCR). After the ScFv gene was modified by 5/71 and Not I,it was subcloned into the secretory expression vector pUC19/119, and then was transformed into E.coli TG1.The positive colonies were screened by colony PCR and their expressions were induced by IPTG.ScFv gene was gained by digesting ScFv expression vector pUC19/119 with 5/71 and NotI restriction enzymes, then subcloned into expression vector pDAP2, followed by transformation in E.coli TG1.The positive colonies were selected by bacterial colony PCR.The expression of fusion protein (scFv-AP) was induced by IPTG.Its activity was detected by enzyme immunoassay. The molecular weights of scFv and scFv-AP were measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS: The product of SOE PCR formed a band of 700 bp in agarose gel electrophoresis. SDS-PAGE demonstrated the molecular weight of scFv was 27 ku.Immunofluorescent assay (IFA) demonstrated its reactivity with TfR.The molecular weight of scFv-AP was 75 ku.Enzyme immunoassay showed that scFv-AP could specifically bind to human TfR and play AP activity. CONCLUSION: We have successfully prepared the anti-human TfR scFv and constructed the fusion protein of scFv and AP.It is promising for immunological experiments.
基金This work was supported by the National Natural Science Foundation of China (No.21334001 and No.91127030).
文摘Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.
基金supported by the National Natural Science Foundation of China(31941001 and 32002292)the Major Science and Technology Project of Henan Province,China(221100110600)the Natural Science Foundation of Henan Province(202300410199).
文摘African swine fever virus(ASFV)is a lethal pathogen that causes severe threats to the global swine industry and it has already had catastrophic socio-economic effects.To date,no licensed prophylactic vaccine exists.Limited knowledge exists about the major immunogens of ASFV and the epitope mapping of the key antigens.As such,there is a considerable requirement to understand the functional monoclonal antibodies(mAbs)and the epitope mapping may be of utmost importance in our understanding of immune responses and designing improved vaccines,therapeutics,and diagnostics.In this study,we generated an ASFV antibody phage-display library from ASFV convalescent swine PBMCs,further screened a specific ASFV major capsid protein(p72)single-chain antibody and fused with an IgG Fc fragment(scFv-83-Fc),which is a specific recognition antibody against ASFV Pig/HLJ/2018 strain.Using the scFv-83-Fc mAb,we selected a conserved epitope peptide(221MTGYKH226)of p72 retrieved from a phage-displayed random peptide library.Moreover,flow cytometry and cell uptake experiments demonstrated that the epitope peptide can significantly promote BMDCs maturation in vitro and could be effectively uptaken by DCs,which indicated its potential application in vaccine and diagnostic reagent development.Overall,this study provided a valuable platform for identifying targets for ASFV vaccine development,as well as to facilitate the optimization design of subunit vaccine and diagnostic reagents.
文摘Multiple sequence alignments can be used in the template-based modelling of protein structures to build fragment-based assembly models. Therefore, useful functional information on the 3D structure of the anti-MCF-7 scFv protein can be obtained using available bioinformatics tools. This paper utilises several commonly-used bioinformatics tools and databases, including BLAST (Basic Local Alignment Search Tool), GenBank, PDB (Protein Data Bank), KABAT numbering and SWISS-MODEL, to gain specific functional insights into the anti-MCF-7 scFv protein and the assembly of single-chain fragment variable (scFv) antibodies, which consist of a variable heavy chain (VH) and a variable light chain (VL) connected by the linker (Gly4-Ser)3. The linker has been built as a loop structure using the Insight II software. The accuracy of the loop structure has been evaluated using Root Mean Square Deviation (RMSD). The accuracies of the VL and VH template-based structures are enhanced by using the evaluation methods Verify3D, ERRAT and Ramchandran plotting, which measure the error in the residues. In the results, 100% of the light-chain residues scored above 0.2, whereas 88.5% of the heavy-chain residues’ scored above 0.15 in the Verify3D evaluation method. Meanwhile, using ERRAT, the alignments of both chains scored more than 70% in space. Additionally, the Ramchandran plot evaluation method showed large numbers of residues in the favoured areas in both chains;these findings demonstrated that all of the chosen templates were the best candidates.
基金Supported by the Grants from Department of Science and Technology of Jilin Province, China(No.20070726)Bureau of Science and Technology of Changchun City, China(No.2005038).
文摘Reactive oxygen species(ROS) plays a key role in human heart diseases. Glutathione peroxidase(GPX) functions as an antioxidant as it catalyzes the reduction of hydroperoxide. In order to investigate the antioxidant effect of human selenium-containing single-chain Fv(Se-scFv-B3), a new mimic of GPX, a model system of hydrogen peroxide(H202)-induced rat cardiac myocyte damage was established. The cardiac myocyte damage was characte- rized in terms of cell viability, lipid peroxidation, cell membrane integrity, and intracellular H202 level. The Se-scFv-B3 significantly reduced H2O2-induced cell damage as shown by the increase of cell viability, the decline of malondialdehyde(MDA) production, lactate dehydrogenase(LDH) release, and intracellular H2O2 level. So Se-scFv-B3 may have a great potential in the treatment of human heart diseases induced by ROS.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 30572213)and Student Innovation Program of Shanxi Medical University (No.200404).
文摘BACKGROUND: Phage display technology has become a vital tool in studies aimed at identifying molecules binding to a specific target. It enables the rapid generation and selection of high affinity, fully human antibody product candidates to essentially any disease target appropriate for antibody therapy. In this study, we prepared the recombinant single-chain fragment variable ( ScFv) antibody to hepatitis B virus surface antigen (HBsAg) by the phage display technology for obtaining a virus-targeting mediator. METHODS: mRNA was isolated from B-lymphocytes from a healthy volunteer and converted into cDNA. The fragment variables of heavy and light chain were amplified separately and assembled into ScFv DNA with a specially constructed DNA linker by polymerase chain reaction. The ScFv DNA was ligated into the phagmid vector pCANT-AB5E and the ligated sample was transformed into competent E. coli TG1. The transformed cells were infected with M13K07 helper phage to form a human recombinant phage antibody library. The volume and recombinant rate of the library were evaluated by bacterial colony count and restriction analysis. After two rounds of panning with HBsAg. the phage clones displaying ScFv of the antibody were selected by enzyme-linked immunosorbant assay ( ELISA) from the enriched phage clones. The antigen binding affinity of the positive clone was detected by competition ELISA. HB2151 E. coli was transfected with the positive phage clone demonstrated by competition ELISA for production of a soluble form of the anti-HBsAg ScFv. ELISA assay was used to detect the antigen binding affinity of the soluble anti-HBsAg ScFv. Finally, the relative molecular mass of soluble anti-HBsAg ScFv was measured by SDS-PAGE. RESULTS: The variable heavy ( VH ) and variable light (VL) and ScFv DNAs were about 340bp, 320bp and 750bp, respectively. The volume of the library was up to 2 × 106 and 8 of 10 random clones were recombinants. Two phage clones could strongly compete with the original HBsAb for binding to HBsAg. Within 2 strong positive phage clones, the soluble anti-HBsAg ScFv from one clone was found to have the binding activity with HBsAg. SDS-PAGE showed that the relative molecular weight of soluble anti-HBsAg ScFv was 32 kDa. CONCLUSION: The anti-HBsAg ScFv successfully produced by phage antibody technology may be useful for broadening the scope of application of the antibody.
基金Zhengzhou Municipal Science and Technology Projects of Development,China (No. 0910SGYS33377-1)Projects of Science and Technology Research of Shaanxi Province,China(No. 2007k09-06)the Social Development Project of Xi'an, China(No.YF07164)
文摘The development of single-chain Fv antibody (scFv) by recombinant gene expression is an important milestone for cancer therapy. Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good penetration into tumor tissue and to improve their pharmacokinetics in vivo, offering a clinically valuable application. The relationship needs to be analyzed that there may be some variations between the structure and function of the fusion proteins, and the relationship between the structure and function of protein molecules was obtained through analyzing relevant literature at home and abroad as well as modeling analysis. Through our analysis of the interaction region between antibody and antigen, and of the binding sites for molecular conformation, it is clear that existing antibodies need to be modified at the DNA sequence level, enhancing the biological activity of the antibodies. Based on the view that bio-molecular computer models are closely integrated with biological experiments, a bio-molecular structure-activity relationship model can be established in terms of molecular conformation, physical and chemical properties and the biological activity of single-chain antibodies. Two enlightenments are obtained from our analysis. On one hand, the structure-activity relationship is clear for new immune molecules at the gene expression level. On the other hand, a single-chain antibody molecule can be designed and optimized for the cancer-oriented treatment. In this article, we provided the theoretical and experimental basis for the development of single-chain antibodies appropriate for retinoblastoma therapy.
文摘Summary: A three-dimensional (3D) graphic model of a single-chain Fv (scFv) which was derived from an anti-human placental acidic isoferritin (PAF) monoclonal antibody (MAb) was construct- ed by a homologous protein-predicting computer algorithm on Silicon graphic computer station. The structure, surface static electricity and hydrophobicity of scFv were investigated. Computer graphic modelling indicated that all regions of scFv including the linker, variable regions of the heavy (VH) and light (VL) chains were suitable. The VH region and the VL region were involved in composing the 'hydrophobic pocket'. The linker was drifted away VH and VL regions. The complementarity determining regions (CDRs) of VH and VL regions surrounded the 'hydrophobic pocket'. This study provides a theory basis for improving antibody affinity, investigating antibody structure and analyzing the functions of VH and VL regions in antibody activity.
文摘The effect of sintering dispersed and bulk,low molecular weight(M_n=50,000 Da),nano-emulsionpolytetrafluoroethylene(PTFE)particles near their melting point is described.With the nascent particles consisting of ca.75 nm diameter,hexagonal,single crystals,sintering at,e.g.,350℃,results,initially,in merger of neighboring particles,followed by individual molecular motion on the substrate and the formation of folded chain,lamellar single crystals andspherulites,and on-edge ribbons.It is suggested these structures develop,with time,in the mesomorphic“melt”.Sintering ofthe bulk resin yields extended chain,band structures,as well as folded chain lamellae;end-surface to end-surface merger,possibly by end-to-end polymerization,occurs with increasing time.
文摘objective: To construct the bone morphogenetic protein (BMP) single chain Fv (scFv) and obtain its expression. Methods: Using a synthesized peptide linker containing 15 amino acids, the N end of the heavy chain gene fragment of a strain of murine anti-BMP McAb was connected with the C end of its light chain gene fragment with subcloning. Then the recombinant BMPscFv was cloned into pGEX-4T-1 plasmid and in duced to express in E. coli JM 109. Results: The full length of the recombinant BMPscFv gene was 705 bp and its fusion protein was about 52 kD. Conclusion: Subcloning is a rapid, simple and reliable method for construction of scFv.
文摘Objective The binding of cell adhesive peptides(such as RGD)to integrins initiates the recruitment of cytoplasmic adaptor proteins(e.g.,vinculin)and the formation of focal adhesion(FA)complexes required for cell adhesion.The ability to manipulate this ligand-mediated cell adhesion process is crucial for regulating cell migration,cell differentiation,injury healing,and immune response.Some recent studies reported the importance of the tether length/mobility of the cell adhesive ligands in regulating the traction force development of cells.In the native cellular microenvironment,such a dynamic change in the nanoscale tether length of bioactive ligands is often mediated by conformational changes of the structural proteins due to protein folding or degradation.However,no prior studies have demonstrated the modulation of the ligand tether mobility by controlling the intramolecular folding of polymeric linkers.Unfoldable synthetic macromolecules with easy synthetic routes and controllable structures,such as supramolecular host-guest single chain nanogels(SCNGs),are ideal candidates for mimicking the changes in the tether mobility of bioactive ligands via biorthogonal triggers.Methods S,S’-bis(a’a’-dimethyl-a’’-propargyl acetate)trithiocarbonate was first used to mediate the RAFT polymerization of N,N-dimethyl acrylamide,vinyl-adamantane and vinyl-β-cyclodextrin to yield the ADA@CD-SCNGs.The preparation of the unfoldable host-guest SCNGs was evidenced by the by gel permeation chromatography,proton nuclear magnetic resonance spectroscopy,atomic force microscopy and dynamic light scattering.Then the RGD peptide was conjugated to the alkynyl group on one end of the SCNGs before immobilizing the material on the substrate,which was confirmed by scanning electron microscopy(SEM).The regulation of cell behaviours by unfolding of the SCNG-RGD was confirmed by immunofluorescence staining of vinculin and Yes-associated protein(YAP).Results The preparation of ADA@CD-SCNGs was confirmed by GPC which showed a unimodal molecular weight distribution.DLS and AFM data also proved that the SCNGs had an average diameter of 12±3nm.SEM images showed that SCNGs were conjugated as a linker of RGD peptide to thiolated glass substrate at an average density of 162±11 particles/μm2.These particles disappeared after adding free competitive ADA guest molecules,indicating the triggered unfolding of the tether SCNGs.In addition,the unfolding of supramolecular ADA@CD-SCNGs was also evidenced by a decrease in the GPC elution time and a slight increase in the apparent molecular weight.These results show that the immobilized ADA@CD-SCNGs can be unfolded to tune the tether length and mobility of the conjugated RGD ligands.Then we investigated the regulation of the cell behaviors on the substrate by triggering the unfolding of SCNG linkers.A critical level of traction force is required to effectively initiate and maintain integrin-mediated formation of FA complexes and subsequent mechano-transduction signaling.An increased tether length in cell-adhesive ligands can lead to a diminished cell traction force as if cells are adhering to soft substrates.Here,the unfolding of the ADA@CD-SCNG-RGD triggered by the addition of free ADA led to disassembly of the mature focal adhesions in the cells as evidenced by the reduced vinculin and F-actin in staining.Subsequently,nuclear YAP also decreased significantly because of the impaired mechano-sensing and diminished cell cytoskeleton tension.In addition,the extensively spread cells gradually became round after the medium was supplemented with free competitive ADA to unfold the SCNG linker.These finding demonstrates that the substrates with the unfolded ADA@CD-SCNG-RGD only supported weak cell adhesions.In contrast,on the substrate conjugated with the nonunfoldable MBA-SCNG-RGD linker,the addition of free ADA resulted in no change in the spread cell morphology and protein expressions.These results indicate that the unfoldable host-guest ADA@CD-SCNG can be used to manipulate the nanoscale presentation of ligands to regulate cell behaviors.Conclusions We demonstrate the application of SCNGs as the supramolecular linker to tune the nanoscale ligand tether length.These findings demonstrate that the strategy of manipulating the tether mobility of bioactive ligands by using supramolecular SCNGs as linkers provides a highly tunable,biomimetic,and bio-orthogonal approach to study the dynamic events of cell adhesion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20904047), the Science and Technology Planning Project of Zhejiang Province, China (Grant No. 20100022), and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110304).
文摘We study the translocation of a protein-like chain through a finite cylindrical channel using the pruned-enriched Rosenbluth method (PERM) and the modified orientation-dependent monomer-monomer interaction (ODI) model. Attractive channels (εcp = -2.0, -1.0, -0.5), repulsive chanaels (εcp: 0.5, 1.0, 2.0), and a neutral channel (εcp =- 0) are discussed. The results of the chain dimension and the energy show that Z0 : 1.0 is an important case to distinguish the types of the channels. For the strong attractive channel, more contacts form during the process of translocation. It is also found that an external force is needed to drive the chain outside of the channel with the strong attraction. While for the neutral, the repulsive, and the weak attractive channels, the translocation is spontaneous.
基金Supported by the National Natural Science Foundation of China(No.30970608)the Applicative Technological Project of Bureau of Science and Technology of Changchun City, China(No.2009045)+1 种基金the Development and Planning Major Program of Jilin Provincial Science and Technology Department, China(No.20100948)the Innovation Method Fund of China (No.2008IM040800)
文摘In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774035)the Qianjiang RenCai Program of Zhejiang Province,China(Grant No.2007R0010)
文摘We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.
文摘In this review, single-chain fragment variable construction using phage-display technology as a promising anticancer immunotherapy technology is described. Cloning and the specific bio-panning selection with phage display technology, as well as the use of the epidermal growth factor receptor (EGFR) at the surface of MCF-7 cells as the antigen for the straightforward specific selection of single chain Fvs, are discussed. Moreover, phage display technologies and their application are important for vaccine production and immunotherapy against viruses and cancers. Furthermore, expression of the gene will cause the production and expression of the protein in prokaryotic and eukaryotic cells, which can be used to detect anti-cancer single chain fragment variables (scFvs). Finally, homology modelling is described to show the three-dimensional scFv structure that verifies the Complementary-Determining-Regions (CDRs) on the surface of the model.
基金the National Natural Science Foundation of China,No. 30670741
文摘Intracranial delivery of human Fc-deleted antibody specific to amyloid-β peptide (Aβ, anti-Aβ single-chain Fv, scFv) via adeno-associated virus (AAV) inhibits amyloid deposition in transgenic mice. However, the effects of AAV-mediated Fc-deleted antibody on animal behavior remain unclear. In this study, the anti-Aβ scFv antibody gone, isolated from phage display, was fused to the 5' end of the scFv antibody gone for antibody secretion by 2 rounds of polymerase chain reaction amplification. The fused antibody cDNA was cloned into a pSNAV2 plasmid under the control of the cytomegalovirus promoter. The sequence verified expression vector pSNAV2/scFv was transferred to BHK-21 ceils, and stable transfected BHK-21/scFv cells were established by G418 selection and infected with the recombinant herpes simplex virus rHSV/repcap for AAV production. Recombinant AAV was injected into the left quadriceps femoris of PDAPP transgenic mice. After 3 months, Morris water-maze results confirmed significantly improved cognitive function in a mouse model of Alzheimer's disease. Key Words: Alzheimer's disease; adeno-associated virus; amyloid-β peptide; single-chain antibody; neurodegenerative diseases; neural regeneration