期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Studies on Differential Nuclear Translocation Mechanism and Assembly of the Three Subunits of the Arabidopsis thaliana Transcription Factor NF-Y 被引量:10
1
作者 Dieter Hackenberg Yanfang Wu Andrea Voigt Robert Adams Peter Schramm Bernhard GrimmI 《Molecular Plant》 SCIE CAS CSCD 2012年第4期876-888,共13页
The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Ara- bidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, al... The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Ara- bidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, all potential combi- nations of the subunits are possible for the assembly of the heterotrimeric complex. We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y. The evaluation of physical interactions among all members of the NF-Y subunit families indicate a strong requirement for NF-YB/NF-YC heterodimerization before the entire complex can be accomplished. By means of a modified yeast two-hybrid system assembly of all three subunits to a heterotrimeric complex was demonstrated. Using GFP fusion constructs, NF-YA and NF-YC localization in the nucleus was demonstrated, while NF- YB is solely imported into the nucleus as a NF-YC-associated heterodimer NF-YC. This piggyback transport of the two Arabidopsis subunits differs from the import of the NF-Y heterotrimer of heterotrophic organisms. Based on a peptide structure model of the histone-fold-motifs, disulfide bonding among intramolecular conserved cysteine residues of NF-YB, which is responsible for the redox-regulated assembly of NF-YB and NF-YC in human and Aspergillus nidulans, can be excluded for Arabidopsis NF-YB. 展开更多
关键词 gene expression transcriptional control and transcription factors nuclear translocation protein-proteininteraction.
原文传递
Functional protein microarray: an ideal platform for investigating protein binding property 被引量:1
2
作者 Shu-Min ZHOU 《Frontiers in Biology》 CAS CSCD 2012年第4期336-349,共14页
Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements h... Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements have also been achieved for applying protein microarrays on determining a variety of protein biochemical activities. Among these applications, detection of protein binding properties, such as protein-protein interactions (PPIs), protein-DNA interactions (PDIs), protein-RNA interactions, and antigen-antibody interactions, are straightforward and have substantial impacts on many research fields. In this review, we will focus on the recent progresses in protein-protein, protein-DNA, protein-RNA, protein-small molecule, protein-lipid, protein-glycan, and antigen-antibody interactions. We will also discuss the challenges and future directions of protein microarray technologies. We strongly believe that protein microarrays will soon become an indispensible tool for both basic research and clinical applications. 展开更多
关键词 lectin microarray protein microarray protein-cell interaction protein-DNA interaction (PDI) protein-proteininteraction (PPI)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部