There are several motivations, such as mobility, cost, and secu- rity, that are behind the trend of traditional desktop users transi- tioning to thin-client-based virtual desktop clouds (VDCs). Such a trend has led ...There are several motivations, such as mobility, cost, and secu- rity, that are behind the trend of traditional desktop users transi- tioning to thin-client-based virtual desktop clouds (VDCs). Such a trend has led to the rising importance of human-centric performance modeling and assessment within user communities that are increasingly making use of desktop virtualization. In this paper, we present a novel reference architecture and its eas- ily deployable implementation for modeling and assessing objec- tive user quality of experience (QoE) in VDCs. This architec- ture eliminates the need for expensive, time-consuming subjec- tive testing and incorporates finite-state machine representa- tions for user workload generation. It also incorporates slow-mo- tion benchmarking with deep-packet inspection of application task performance affected by QoS variations. In this way, a "composite-quality" metric model of user QoE can be derived. We show how this metric can be customized to a particular user group profile with different application sets and can be used to a) identify dominant performance indicators and troubleshoot bottlenecks and b) obtain both absolute and relative objective user QoE measurements needed for pertinent selection of thin-client encoding configurations in VDCs. We validate our composite-quality modeling and assessment methodology by us- ing subjective and objective user QoE measurements in a re- al-world VDC called VDPilot, which uses RDP and PCoIP thin-client protocols. In our case study, actual users are pres- ent in virtual classrooms within a regional federated university system.展开更多
Hypertext transfer protocol(HTTP) adaptive streaming(HAS) plays a key role in mobile video transmission. Considering the multi-segment and multi-rate features of HAS, this paper proposes a buffer-driven resource manag...Hypertext transfer protocol(HTTP) adaptive streaming(HAS) plays a key role in mobile video transmission. Considering the multi-segment and multi-rate features of HAS, this paper proposes a buffer-driven resource management(BDRM) method to enhance HAS quality of experience(QoE) in mobile network. Different from the traditional methods only focusing on base station side without considering the buffer, the proposed method takes both station and client sides into account and end user's buffer plays as the drive of whole schedule process. The proposed HAS QoE influencing factors are composed of initial delay, rebuffering and quality level. The BDRM method decomposes the HAS QoE maximization problem into client and base station sides separately to solve it in multicell and multi-user video playing scene in mobile network. In client side, the decision is made based on buffer probe and rate request algorithm by each user separately. It guarantees the less rebuffering events and decides which HAS segment rate to fetch. While, in the base station side, the schedule of wireless resource is made to maximize the quality level of all access clients and decides the final rate pulled from HAS server. The drive of buffer and twice rate request schemes make BDRMtake full advantage of HAS's multi-segment and multi-rate features. As to the simulation results, compared with proportional fair(PF), Max C/I and traditional HAS schedule(THS) methods, the proposed BDRM method decreases rebuffering percent to 1.96% from 11.1% with PF and from 7.01% with THS and increases the mean MOS of all users to 3.94 from 3.42 with PF method and from 2.15 with Max C/I method. It also guarantees a high fairness with 0.98 from the view of objective and subjective assessment metrics.展开更多
基金supported by VMware and the National Science Foundation under award numbers CNS-1050225 and CNS-1205658
文摘There are several motivations, such as mobility, cost, and secu- rity, that are behind the trend of traditional desktop users transi- tioning to thin-client-based virtual desktop clouds (VDCs). Such a trend has led to the rising importance of human-centric performance modeling and assessment within user communities that are increasingly making use of desktop virtualization. In this paper, we present a novel reference architecture and its eas- ily deployable implementation for modeling and assessing objec- tive user quality of experience (QoE) in VDCs. This architec- ture eliminates the need for expensive, time-consuming subjec- tive testing and incorporates finite-state machine representa- tions for user workload generation. It also incorporates slow-mo- tion benchmarking with deep-packet inspection of application task performance affected by QoS variations. In this way, a "composite-quality" metric model of user QoE can be derived. We show how this metric can be customized to a particular user group profile with different application sets and can be used to a) identify dominant performance indicators and troubleshoot bottlenecks and b) obtain both absolute and relative objective user QoE measurements needed for pertinent selection of thin-client encoding configurations in VDCs. We validate our composite-quality modeling and assessment methodology by us- ing subjective and objective user QoE measurements in a re- al-world VDC called VDPilot, which uses RDP and PCoIP thin-client protocols. In our case study, actual users are pres- ent in virtual classrooms within a regional federated university system.
基金supported by the 863 project (Grant No. 2014AA01A701) Beijing Natural Science Foundation (Grant No. 4152047)
文摘Hypertext transfer protocol(HTTP) adaptive streaming(HAS) plays a key role in mobile video transmission. Considering the multi-segment and multi-rate features of HAS, this paper proposes a buffer-driven resource management(BDRM) method to enhance HAS quality of experience(QoE) in mobile network. Different from the traditional methods only focusing on base station side without considering the buffer, the proposed method takes both station and client sides into account and end user's buffer plays as the drive of whole schedule process. The proposed HAS QoE influencing factors are composed of initial delay, rebuffering and quality level. The BDRM method decomposes the HAS QoE maximization problem into client and base station sides separately to solve it in multicell and multi-user video playing scene in mobile network. In client side, the decision is made based on buffer probe and rate request algorithm by each user separately. It guarantees the less rebuffering events and decides which HAS segment rate to fetch. While, in the base station side, the schedule of wireless resource is made to maximize the quality level of all access clients and decides the final rate pulled from HAS server. The drive of buffer and twice rate request schemes make BDRMtake full advantage of HAS's multi-segment and multi-rate features. As to the simulation results, compared with proportional fair(PF), Max C/I and traditional HAS schedule(THS) methods, the proposed BDRM method decreases rebuffering percent to 1.96% from 11.1% with PF and from 7.01% with THS and increases the mean MOS of all users to 3.94 from 3.42 with PF method and from 2.15 with Max C/I method. It also guarantees a high fairness with 0.98 from the view of objective and subjective assessment metrics.