Proton cyclotron waves(PCWs)can be generated by ion pickup of Martian exospheric particles in the solar wind.The solar wind ion pickup process is highly dependent on the“IMF cone angle”—the angle between the solar ...Proton cyclotron waves(PCWs)can be generated by ion pickup of Martian exospheric particles in the solar wind.The solar wind ion pickup process is highly dependent on the“IMF cone angle”—the angle between the solar wind velocity and the interplanetary magnetic field(IMF),which also plays an important role in the generation of PCWs.Using data from 2.15 Martian years of magnetic field measurements collected by the Mars Atmosphere and Volatile Evolution(MAVEN)mission,we have identified 3307 upstream PCW events.Their event number distribution decreases exponentially with their duration.A statistical investigation of the effects of IMF cone angle on the amplitudes and occurrence rates of PCWs reveals a slight tendency of PCWs’amplitudes to decrease with increasing IMF cone angle.The relationship between the amplitude and IMF cone angle is weak,with a correlation coefficient r=–0.3.We also investigated the influence of IMF cone angle on the occurrence rate of PCWs and found that their occurrence rate is particularly high for intermediate IMF cone angles(~18°–42°)even though highly oblique IMF orientation occurs most frequently in the upstream region of the Martian bow shock.We also conclude that these variabilities are not artefacts of temporal coverage biases in MAVEN sampling.Our results demonstrate that whereas IMF cone angle strongly influences the occurrence of PCWs,IMF cone angle may also weakly modulate their amplitudes in the upstream region of Mars.展开更多
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory....We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA17010201)supported by Thousand Young Talents Program of China and Chinese NSFC grant (41525016, 41474155, 41661164034, 41621004, 41374180, 41774188)+1 种基金cofunded by EU. Asupported by the Fund for Scientific Research (F.R.S.FNRS)
文摘Proton cyclotron waves(PCWs)can be generated by ion pickup of Martian exospheric particles in the solar wind.The solar wind ion pickup process is highly dependent on the“IMF cone angle”—the angle between the solar wind velocity and the interplanetary magnetic field(IMF),which also plays an important role in the generation of PCWs.Using data from 2.15 Martian years of magnetic field measurements collected by the Mars Atmosphere and Volatile Evolution(MAVEN)mission,we have identified 3307 upstream PCW events.Their event number distribution decreases exponentially with their duration.A statistical investigation of the effects of IMF cone angle on the amplitudes and occurrence rates of PCWs reveals a slight tendency of PCWs’amplitudes to decrease with increasing IMF cone angle.The relationship between the amplitude and IMF cone angle is weak,with a correlation coefficient r=–0.3.We also investigated the influence of IMF cone angle on the occurrence rate of PCWs and found that their occurrence rate is particularly high for intermediate IMF cone angles(~18°–42°)even though highly oblique IMF orientation occurs most frequently in the upstream region of the Martian bow shock.We also conclude that these variabilities are not artefacts of temporal coverage biases in MAVEN sampling.Our results demonstrate that whereas IMF cone angle strongly influences the occurrence of PCWs,IMF cone angle may also weakly modulate their amplitudes in the upstream region of Mars.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40774078, 40404012, 40474064 and 40674076, and the Visiting Scholar Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences.
文摘We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.
文摘分析医用回旋加速器正电子核素18F的照射条件和轰击参数对生产的影响,优化生产条件并给出最佳的轰击参数以期获得高效的生产产额。使用Origin 9.0软件绘制核素18F产量随不同质子束流强度和轰击时间的变化趋势曲线,以蒙特卡罗方法建立回旋加速器质子辐照靶室模型,分析不同质子能量、Havar膜和靶水厚度等对核素18F产量的影响,并给出18F生产最佳的束流强度、轰击时间和质子能量等生产参数。回旋加速器运行期间束流应充分聚焦于照射靶室中心位置,最大化的利用束流以引发足够多的核反应;根据质子束流的能量选择合适的Havar膜和靶水厚度,20 Me V质子束流轰击生产正电子核素18F的靶室系统使用Havar膜总计厚度60μm,靶水厚度3 mm,可获得最佳18F产量。总体而言,18F的产量随束流强度而增大,轰击时间越长18F产量越大,但随着轰击时间的延长增长趋势变缓,轰击时间建议60 min左右。正电子核素18F的生产需要选择合适的Havar膜和靶水厚度(当质子能量为20 Me V时,推荐Havar厚度60μm,靶水厚度3 mm),轰击时间建议60 min左右,开机启动稳定一段时间后再开始照射。